bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2023‒11‒26
ten papers selected by
Maria-Virginia Giolito, Université Catholique de Louvain



  1. Sci Adv. 2023 Nov 24. 9(47): eadh9673
      The mammalian intestine is one of the most rapidly self-renewing tissues, driven by stem cells residing at the crypt bottom. Paneth cells form a major element of the niche microenvironment providing various growth factors to orchestrate intestinal stem cell homeostasis, such as Wnt3. Different Wnt ligands can selectively activate β-catenin-dependent (canonical) or -independent (noncanonical) signaling. Here, we report that the Dishevelled-associated activator of morphogenesis 1 (Daam1) and its paralogue Daam2 asymmetrically regulate canonical and noncanonical Wnt (Wnt/PCP) signaling. Daam1/2 interacts with the Wnt inhibitor RNF43, and Daam1/2 double knockout stimulates canonical Wnt signaling by preventing RNF43-dependent degradation of the Wnt receptor, Frizzled (Fzd). Single-cell RNA sequencing analysis revealed that Paneth cell differentiation is impaired by Daam1/2 depletion because of defective Wnt/PCP signaling. Together, we identified Daam1/2 as an unexpected hub molecule coordinating both canonical and noncanonical Wnt, which is fundamental for specifying an adequate number of Paneth cells.
    DOI:  https://doi.org/10.1126/sciadv.adh9673
  2. Nat Commun. 2023 Nov 21. 14(1): 7599
      Nutrient availability is a major selective force in the evolution of metazoa, and thus plasticity in tissue function and morphology is shaped by adaptive responses to nutrient changes. Utilizing Drosophila, we reveal that distinct calibration of acyl-CoA metabolism, mediated by Acbp6 (Acyl-CoA binding-protein 6), is critical for nutrient-dependent tissue plasticity. Drosophila Acbp6, which arose by evolutionary duplication and binds acyl-CoA to tune acetyl-CoA metabolism, is required for intestinal resizing after nutrient deprivation through activating intestinal stem cell proliferation from quiescence. Disruption of acyl-CoA metabolism by Acbp6 attenuation drives aberrant 'switching' of metabolic networks in intestinal enterocytes during nutrient adaptation, impairing acetyl-CoA metabolism and acetylation amid intestinal resizing. We also identified STAT92e, whose function is influenced by acetyl-CoA levels, as a key regulator of acyl-CoA and nutrient-dependent changes in stem cell activation. These findings define a regulatory mechanism, shaped by acyl-CoA metabolism, that adjusts proliferative homeostasis to coordinately regulate tissue plasticity during nutrient adaptation.
    DOI:  https://doi.org/10.1038/s41467-023-43362-4
  3. J Cell Commun Signal. 2023 Nov 20.
      Aberrant canonical Wnt signaling is a hallmark of colon cancer. The TP53 tumor suppressor gene is altered in many solid tumors, including colorectal cancer, resulting in mutant versions of p53 (mut-p53) that lose their tumor suppressor capacities and acquire new-oncogenic functions (GOFs) critical for disease progression. Although the mechanisms related to mut-p53 GOF have been explored extensively, the relevance of mut-p53 in the canonical Wnt pathway is not well defined. This work investigated the influence of mut-p53 compared to wt-p53 in β-catenin-dependent Wnt signaling. Using the TCGA public data from Pan-Cancer and the GEPIA2 platform, an in silico analysis of wt-p53 versus mut-p53 genotyped colorectal cancer patients showed that TP53 (p53) and CTNNB1 (β-catenin) are significantly overexpressed in colorectal cancer, compared with normal tissue. Using p53 overexpression or p53 knockdown assays of wt-p53 or mut-p53, we found that while wt-p53 antagonizes canonical Wnt signaling, mut-p53 induces the opposite effect, improving the β-catenin-dependent transcriptional activity and colony formation ability of colon cancer cells, which were both decreased by mut-p53 knockdown expression. The mechanism involved in mut-p53-induced activation of canonical Wnt appears to be via AKT-mediated phosphorylation of Ser 552 of β-catenin, which is known to stabilize and enhance its transcriptional activity. We also found that while wt-p53 expression contributes to 5-FU sensitivity in colon cancer cells, the RITA p53 reactivating molecule counteracted the resistance against 5-FU in cells expressing mut-p53. Our results indicate that mut-p53 GOF acts as a positive regulator of canonical Wnt signaling and participates in the induction of resistance to 5-FU in colon cancer cells.
    Keywords:  5-FU chemoresistance; Canonical Wnt signaling; Mutant p53 gain-of-function; p53; β-Catenin phosphorylation
    DOI:  https://doi.org/10.1007/s12079-023-00793-4
  4. Nat Commun. 2023 Nov 20. 14(1): 7547
      Since adult stem cells are responsible for replenishing tissues throughout life, it is vital to understand how failure to undergo apoptosis can dictate stem cell behavior both intrinsically and non-autonomously. Here, we report that depletion of pro-apoptotic Bax protein bestows hair follicle stem cells with the capacity to eliminate viable neighboring cells by sequestration of TNFα in their membrane. This in turn induces apoptosis in "loser" cells in a contact-dependent manner. Examining the underlying mechanism, we find that Bax loss-of-function competitive phenotype is mediated by the intrinsic activation of NFκB. Notably, winner stem cells differentially respond to TNFα, owing to their elevated expression of TNFR2. Finally, we report that in vivo depletion of Bax results in an increased stem cell pool, accelerating wound-repair and de novo hair follicle regeneration. Collectively, we establish a mechanism of mammalian cell competition, which can have broad therapeutic implications for tissue regeneration and tumorigenesis.
    DOI:  https://doi.org/10.1038/s41467-023-41684-x
  5. Sci Adv. 2023 Nov 24. 9(47): eadi8454
      Tissue regeneration after injury involves the dedifferentiation of somatic cells, a natural adaptive reprogramming that leads to the emergence of injury-responsive cells with fetal-like characteristics. However, there is no direct evidence that adaptive reprogramming involves a shared molecular mechanism with direct cellular reprogramming. Here, we induced dedifferentiation of intestinal epithelial cells using OSKM (Oct4, Sox2, Klf4, and c-Myc) in vivo. The OSKM-induced forced dedifferentiation showed similar molecular features of intestinal regeneration, including a transition from homeostatic cell types to injury-responsive-like cell types. These injury-responsive-like cells, sharing gene signatures of revival stem cells and atrophy-induced villus epithelial cells, actively assisted tissue regeneration following damage. In contrast to normal intestinal regeneration involving Ptgs2 induction, the OSKM promotes autonomous production of prostaglandin E2 via epithelial Ptgs1 expression. These results indicate prostaglandin synthesis is a common mechanism for intestinal regeneration but involves a different enzyme when partial reprogramming is applied to the intestinal epithelium.
    DOI:  https://doi.org/10.1126/sciadv.adi8454
  6. Commun Biol. 2023 Nov 24. 6(1): 1191
      Circulating tumor cells (CTCs) play an important role in metastasis and recurrence. However, which cells comprise the complex tumor lineages in recurrence and are key in metastasis are unknown in colorectal cancer (CRC). CRC with high expression of POU5F1 has a poor prognosis with a high incidence of liver metastatic recurrence. We aim to reveal the key cells promoting metastasis and identify treatment-resistant lineages with established EGFP-expressing organoids in two-dimensional culture (2DOs) under the POU5F1 promotor. POU5F1-expressing cells are highly present in relapsed clinical patients' blood as CTCs. Sorted POU5F1-expressing cells from 2DOs have cancer stem cell abilities and abundantly form liver metastases in vivo. Single-cell RNA sequencing of 2DOs identifies heterogeneous populations derived from POU5F1-expressing cells and the Wnt signaling pathway is enriched in POU5F1-expressing cells. Characteristic high expression of CTLA4 is observed in POU5F1-expressing cells and immunocytochemistry confirms the co-expression of POU5F1 and CTLA4. Demethylation in some CpG islands at the transcriptional start sites of POU5F1 and CTLA4 is observed. The Wnt/β-catenin pathway inhibitor, XAV939, prevents the adhesion and survival of POU5F1-expressing cells in vitro. Early administration of XAV939 also completely inhibits liver metastasis induced by POU5F1-positive cells.
    DOI:  https://doi.org/10.1038/s42003-023-05562-y
  7. Cancer Discov. 2023 Nov 22. OF1
      Pantothetic acid is required for metabolic activity that supports MYC-driven breast tumor growth.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2023-185
  8. Nat Commun. 2023 Nov 23. 14(1): 7661
      Elimination of cancer stem cells (CSCs) and reinvigoration of antitumor immunity remain unmet challenges for cancer therapy. Tumor-associated macrophages (TAMs) constitute the prominant population of immune cells in tumor tissues, contributing to the formation of CSC niches and a suppressive immune microenvironment. Here, we report that high expression of inhibitor of differentiation 1 (ID1) in TAMs correlates with poor outcome in patients with colorectal cancer (CRC). ID1 expressing macrophages maintain cancer stemness and impede CD8+ T cell infiltration. Mechanistically, ID1 interacts with STAT1 to induce its cytoplasmic distribution and inhibits STAT1-mediated SerpinB2 and CCL4 transcription, two secretory factors responsible for cancer stemness inhibition and CD8+ T cell recruitment. Reducing ID1 expression ameliorates CRC progression and enhances tumor sensitivity to immunotherapy and chemotherapy. Collectively, our study highlights the pivotal role of ID1 in controlling the protumor phenotype of TAMs and paves the way for therapeutic targeting of ID1 in CRC.
    DOI:  https://doi.org/10.1038/s41467-023-43548-w
  9. Cells. 2023 Nov 20. pii: 2658. [Epub ahead of print]12(22):
      WNT/β-catenin signaling is essential for colon cancer development and progression. WNT5A (ligand of non-canonical WNT signaling) and its mimicking peptide Foxy5 impair β-catenin signaling in colon cancer cells via unknown mechanisms. Therefore, we investigated whether and how WNT5A signaling affects two promoters of β-catenin signaling: the LGR5 receptor and its ligand RSPO3, as well as β-catenin activity and its target gene VEGFA. Protein and gene expression in colon cancer cohorts were analyzed by immunohistochemistry and qRT-PCR, respectively. Three colon cancer cell lines were used for in vitro and one cell line for in vivo experiments and results were analyzed by Western blotting, RT-PCR, clonogenic and sphere formation assays, immunofluorescence, and immunohistochemistry. Expression of WNT5A (a tumor suppressor) negatively correlated with that of LGR5/RSPO3 (tumor promoters) in colon cancer cohorts. Experimentally, WNT5A signaling suppressed β-catenin activity, LGR5, RSPO3, and VEGFA expression, and colony and spheroid formations. Since β-catenin signaling promotes colon cancer stemness, we explored how WNT5A expression is related to that of the cancer stem cell marker DCLK1. DCLK1 expression was negatively correlated with WNT5A expression in colon cancer cohorts and was experimentally reduced by WNT5A signaling. Thus, WNT5A and Foxy5 decrease LGR5/RSPO3 expression and β-catenin activity. This inhibits stemness and VEGFA expression, suggesting novel treatment strategies for the drug candidate Foxy5 in the handling of colon cancer patients.
    Keywords:  Foxy5; LGR5; R-spondin3; VEGFA; WNT/β-catenin signaling; WNT5A
    DOI:  https://doi.org/10.3390/cells12222658