bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2021‒10‒24
six papers selected by
Maria-Virginia Giolito
IRFAC/UMR-S1113 INSERM


  1. Am J Cancer Res. 2021 ;11(9): 4220-4240
      Obesity results from an imbalance between caloric intake and energy expenditure, and it is highly associated with colorectal carcinogenesis and therapeutic resistance in patients with colorectal cancer (CRC). Dysregulation of adipokine production in obesity has been reported to cause malignant behaviors in CRC. Leptin, which is the principal hormone secreted by adipocytes and an obesity-associated adipokine, is significantly overexpressed in CRC tissues. However, the effect of leptin on chemoresistance in CRC is unclear. Therefore, the aim of this study was to clarify the role of leptin and the underlying mechanisms in mediating 5-fluorouracil (5-FU) resistance in CRC. We used palmitate to artificially generate obese adipocytes. As expected, lipid accumulation was significantly increased in obese adipocytes. We demonstrated that CRC cells incubated with conditioned media (CM) harvested from obese adipocytes were associated with increased resistance to 5-FU. Notably, this increase in resistance to 5-FU was through the elevated production and secretion of leptin. Leptin could further stimulate the expression of AXL and activate its downstream signaling molecule, PLCγ, thereby resulting in an increased expression of p-glycoprotein (P-gp) in CRC cells. Mechanistically, leptin induced AXL expression via the inhibition of AMPK and subsequent increase in YAP activation and nuclear translocation. In addition, nuclear YAP interacted with TEAD and promoted the occupancy of TEAD on the AXL promoter, thereby stimulating AXL promoter activity after leptin treatment. Furthermore, leptin neutralization rescued the sensitivity of CRC tumors to 5-FU in mice fed on a high-fat diet (HFD). These results indicated that leptin mediated 5-FU resistance through YAP-dependent AXL overexpression in CRC.
    Keywords:  Chemoresistance; colorectal cancer; obesity; oncogene; receptor tyrosine kinase
  2. J Cancer. 2021 ;12(21): 6363-6371
      Background: Chemoresistance is one of the main causes of recurrence in colorectal cancer (CRC) patients and leads to a poor prognosis. To characterize RUNX1 expression in colorectal cancer (CRC) and elucidate its mechanistic involvement in the tumor biology of this disease. Methods: The expression of RUNX1 in CRC and normal tissues was detected by bioinformatics analysis. Cell proliferation was measured by CCK-8 and clonogenic assays. In vivo tumor progression was assessed with a xenograft mouse model. Cell drug sensitivity tests and flow cytometry were performed to analyze CRC cell chemoresistance. RUNX1, key molecules of the Hedgehog signaling pathway, and ABCG2 were detected by qRT-PCR and Western blotting. Results: RUNX1 expression is upregulated in CRC tissues. RUNX1 enhanced CRC cell resistance to 5-fluorouracil (5-FU), promoted proliferation, and inhibited 5-FU-induced apoptosis. Mechanistically, RUNX1 can activate the Hedgehog signaling pathway and promote the expression of ABCG2 in CRC cells. Conclusions: Our study demonstrated that RUNX1 promotes CRC proliferation and chemoresistance by activating the Hedgehog signaling pathway and ABCG2 expression.
    Keywords:  Hedgehog signaling pathway; RUNX1; chemoresistance; colorectal cancer; proliferation
    DOI:  https://doi.org/10.7150/jca.51338
  3. J Exp Clin Cancer Res. 2021 Oct 18. 40(1): 328
      Cetuximab and panitumumab are monoclonal antibodies (mAbs) against epidermal growth factor receptor (EGFR) that are effective agents for metastatic colorectal cancer (mCRC). Cetuximab can prolong survival by 8.2 months in RAS wild-type (WT) mCRC patients. Unfortunately, resistance to targeted therapy impairs clinical use and efficiency. The mechanisms of resistance refer to intrinsic and extrinsic alterations of tumours. Multiple therapeutic strategies have been investigated extensively to overcome resistance to anti-EGFR mAbs. The intrinsic mechanisms include EGFR ligand overexpression, EGFR alteration, RAS/RAF/PI3K gene mutations, ERBB2/MET/IGF-1R activation, metabolic remodelling, microsatellite instability and autophagy. For intrinsic mechanisms, therapies mainly cover the following: new EGFR-targeted inhibitors, a combination of multitargeted inhibitors, and metabolic regulators. In addition, new cytotoxic drugs and small molecule compounds increase the efficiency of cetuximab. Extrinsic alterations mainly disrupt the tumour microenvironment, specifically immune cells, cancer-associated fibroblasts (CAFs) and angiogenesis. The directions include the modification or activation of immune cells and suppression of CAFs and anti-VEGFR agents. In this review, we focus on the mechanisms of resistance to anti-EGFR monoclonal antibodies (anti-EGFR mAbs) and discuss diverse approaches to reverse resistance to this therapy in hopes of identifying more mCRC treatment possibilities.
    Keywords:  Anti-epidermal growth factor receptor targeted therapies; Drug resistance; Metastatic colorectal cancer; Reversal strategies
    DOI:  https://doi.org/10.1186/s13046-021-02130-2
  4. Oncology (Williston Park). 2021 Oct 21. 35(10): 654-660
      Metastatic colorectal cancer (mCRC) is the second most common cause of cancer-related death worldwide. In the mid-1980s, the median overall survival (OS) for patients with mCRC ranged from 10 to 12 months from the time of initial diagnosis. In more recent studies, this median has more than doubled and is commonly reported at more than 25 to 30 months. These improvements are due, in large part, to the introduction of multiple novel agents during the last 3 decades. Despite these improvements, however, nearly all patients treated with palliative chemotherapy will eventually develop resistance and ultimately succumb to progression of metastatic disease. Understanding the mechanisms by which malignant cells evade treatment could unlock novel therapeutic strategies that overcome resistance and improve survival. In this review, we will discuss some of the drivers of therapeutic resistance in patients with mCRC and present some novel strategies to overcome resistance.
    DOI:  https://doi.org/10.46883/ONC.2021.3510.0654
  5. Int J Colorectal Dis. 2021 Oct 22.
      PURPOSE: Colorectal cancer (CRC) can be classified according to the chromosomal-instability pathway (a microsatellite-stable (MSS) pathway) and the microsatellite-instability (MSI) pathway. Adjuvant therapy after surgery in advanced CRC is usually based on fluoropyrimidine 5-fluorouracil (5-FU) alone or combined with other agents. Controversy however remains on the use of 5-FU-based regimens in treating MSI-related tumours.AIMS: To systematically investigate the relationship between tumour microsatellite profile and 5-year overall survival in patients with CRC treated with 5-FU.
    METHODS: A systematic literature review of PubMed and Embase databases was conducted. Pre-specified criteria determined study inclusion/exclusion. The PRISMA and QUADAS-2 criteria were used to assess study suitability and quality respectively. Patients were categorised as having either MSI or MSS CRC. Overall 5-year survival was estimated from Kaplan-Meier curves. Publication bias was assessed using funnel-plots and Egger's test.
    RESULTS: 1807 studies were identified, with meta-analysis performed using nine studies. 5-FU treated individuals with CRC who died at 5 years were found to be 0.31 times less likely to have MSI than those who were alive, although this was not statistically significant. There was an insufficient number of studies to enable subgroup analysis by stage.
    CONCLUSIONS: In this meta-analysis, MSI status does not alter 5-year survival of patients with CRC patients treated with adjuvant 5-FU, however there is significant heterogeneity in the design of individual studies in the data synthesis. More studies are necessary to clarify whether CRC patients with MSI CRC, in particular early stage, should be offered 5-FU based adjuvant chemotherapy.
    Keywords:  Chemotherapy; Colorectal cancer; Gastroenterology; Genetics; Oncology
    DOI:  https://doi.org/10.1007/s00384-021-04046-x
  6. Gastroenterology. 2021 Oct 19. pii: S0016-5085(21)03654-4. [Epub ahead of print]
      
    DOI:  https://doi.org/10.1053/j.gastro.2021.09.074