bims-instec Biomed News
on Intestinal stem cells and chemoresistance in colon cancer and intestinal regeneration
Issue of 2021‒09‒19
nine papers selected by
Maria-Virginia Giolito
IRFAC/UMR-S1113 INSERM


  1. Cell Mol Gastroenterol Hepatol. 2021 Sep 14. pii: S2352-345X(21)00168-5. [Epub ahead of print]
      BACKGROUND: Circadian rhythms are daily physiological oscillations driven by the circadian clock: a 24-hour transcriptional timekeeper that regulates hormones, inflammation, and metabolism. Circadian rhythms are known to be important for health, but whether their loss contributes to colorectal cancer is not known.AIMS: We tested the non-redundant clock gene, Bmal1, in intestinal homeostasis and tumorigenesis, using the Apcmin model of colorectal cancer.
    METHODS: Bmal1 mutant, epithelium-conditional Bmal1 mutant, and photoperiod-disrupted mice bearing the Apcmin allele were assessed for tumorigenesis. Tumors and normal non-transformed tissue were characterized. Intestinal organoids were assessed for circadian transcription rhythms by RNA-sequencing, and in vivo and organoid assays were used to test Bmal1-dependent proliferation and self-renewal.
    RESULTS: Loss of Bmal1 or circadian photoperiod increases tumor initiation. In the intestinal epithelium the clock regulates transcripts involved in regeneration and intestinal stem cell signaling. Tumors have no self-autonomous clock function and only weak clock function in vivo. Apcmin clock-disrupted tumors exhibit high Yap (Hippo signaling) activity but exhibit low Wnt activity. Intestinal organoid assays reveal that loss of Bmal1 increases self-renewal in a Yap-dependent manner.
    CONCLUSION: Bmal1 regulates intestinal stem cell pathways, including Hippo signaling, and the loss of circadian rhythms potentiates tumor initiation.
    Keywords:  Circadian Rhythms; Colorectal Cancer; Hippo Pathway; Intestinal Stem Cells
    DOI:  https://doi.org/10.1016/j.jcmgh.2021.08.001
  2. Cell Stem Cell. 2021 Sep 15. pii: S1934-5909(21)00344-1. [Epub ahead of print]
      Little is known about how interactions of diet, intestinal stem cells (ISCs), and immune cells affect early-stage intestinal tumorigenesis. We show that a high-fat diet (HFD) reduces the expression of the major histocompatibility complex class II (MHC class II) genes in intestinal epithelial cells, including ISCs. This decline in epithelial MHC class II expression in a HFD correlates with reduced intestinal microbiome diversity. Microbial community transfer experiments suggest that epithelial MHC class II expression is regulated by intestinal flora. Mechanistically, pattern recognition receptor (PRR) and interferon-gamma (IFNγ) signaling regulates epithelial MHC class II expression. MHC class II-negative (MHC-II-) ISCs exhibit greater tumor-initiating capacity than their MHC class II-positive (MHC-II+) counterparts upon loss of the tumor suppressor Apc coupled with a HFD, suggesting a role for epithelial MHC class II-mediated immune surveillance in suppressing tumorigenesis. ISC-specific genetic ablation of MHC class II increases tumor burden cell autonomously. Thus, HFD perturbs a microbiome-stem cell-immune cell interaction that contributes to tumor initiation in the intestine.
    Keywords:  MHC-II; antigen presentation; cancer; diet; high-fat diet; intestinal stem cells; microbiome; obesity
    DOI:  https://doi.org/10.1016/j.stem.2021.08.007
  3. Gastroenterology. 2021 Sep 11. pii: S0016-5085(21)03489-2. [Epub ahead of print]
      BACKGROUND AND AIMS: Inactivation of the Apc gene is a critical early event in the development of sporadic colorectal cancer (CRC). The expression of serine-threonine kinase receptor-associated protein (STRAP) is elevated in CRCs and is associated with poor outcomes. We investigated the role of STRAP in Apc mutation-induced intestinal tumor initiation and progression.METHODS: We generated Strap intestinal epithelial knockout mice (StrapΔIEC) by crossing mice containing floxed alleles of Strap (Strapfl/fl) with Villin-Cre mice. Then, we generated ApcMin/+;Strapfl/fl;Vill-Cre (ApcMin/+;StrapΔIEC) mice for RNAseq analyses to determine the mechanism of function of STRAP. We used human colon cancer cell lines (DLD1, SW480 and HT29) and human and mouse colon tumor-derived organoids for STRAP knockdown/knockout and overexpression experiments.
    RESULTS: Strap deficiency extended the average survival of ApcMin/+ mice by 80 days and decreased the formation of intestinal adenomas. Expression profiling revealed that the intestinal stem cell (ISC) signature, the Wnt/β-catenin signaling, and the MEK/ERK pathway are downregulated in Strap-deficient adenomas and intestinal organoids. Correlation studies suggest that these STRAP-associated oncogenic signatures are conserved across murine and human colon cancer. STRAP associates with MEK1/2, promotes binding between MEK1/2 and ERK1/2, and subsequently induces the phosphorylation of ERK1/2. STRAP activated Wnt/β-catenin signaling through MEK/ERK-induced phosphorylation of LRP6. STRAP was identified as a target of mutated Apc and Wnt/β-catenin signaling as ChIP and luciferase assays revealed putative binding sites of the β-catenin/TCF4 complex on the Strap promoter.
    CONCLUSION: Therefore, STRAP is a target of and is required in Apc mutation/deletion-induced intestinal tumorigenesis through a novel feed-forward STRAP/MEK-ERK/Wnt-β-catenin/STRAP regulatory axis.
    Keywords:  Intestinal cancer; mouse models; tumorigenesis
    DOI:  https://doi.org/10.1053/j.gastro.2021.09.010
  4. Cancer Cell Int. 2021 Sep 17. 21(1): 501
      BACKGROUND: Recent reports suggest that the long non-coding RNA LBX2 antisense RNA 1 (LBX2-AS1) acts as an important regulator in cancer progression, but its significance in colorectal cancer (CRC) remains undetermined.METHODS: LBX2-AS1 expression levels in CRC were determined from the GEPIA database and CRC tissues to investigate clinical relevance. meRIP-PCR assays investigated the molecular mechanisms underlying the function of m6A in LBX2-AS1. Loss of function experiments was used to define the role of LBX2-AS1 in the progression of CRC. The ceRNA function of LBX2-AS1 was evaluated by RNA immunoprecipitation. In vitro and PDX models were used to determine if LBX2-AS1 promotes 5-fluorouracil resistance.
    RESULTS: Data from the TCGA and our institutional patient cohorts established that LBX2-AS1 levels were significantly upregulated in most CRC tissues relative to normal adjacent colon tissues. Moreover, LBX2-AS1 levels were positively correlated with aggressive disease characteristics, constituting an independent prognostic indicator of overall patient survival. Mechanistic investigations suggested that the increased LBX2-AS1 in CRC was mediated by METTL3-dependent m6A methylation. In vitro experiments indicated that knockdown of LBX2-AS1 inhibited CRC proliferation, migration and invasion with this phenotype linked to LBX2-AS1-mediated regulation of AKT1, acting as a ceRNA to sponge miR-422a. Ex vivo analysis of patient-derived CRC xenografts showed that low LBX2-AS1 expression cases exhibited 5-FU responsiveness and clinical investigations confirmed that low LBX2-AS1 expression was associated with improved clinical benefits from 5-FU therapy.
    CONCLUSIONS: Together these results suggest that LBX2-AS1 may serve as a therapeutic target and predictor of 5-FU benefit in CRC patients.
    Keywords:  5-FU; Colorectal cancer; LBX2-AS1; M6A; ceRNA
    DOI:  https://doi.org/10.1186/s12935-021-02209-y
  5. Biochem Biophys Res Commun. 2021 Sep 07. pii: S0006-291X(21)01300-0. [Epub ahead of print]577 103-109
      As essential phospholipid signaling regulators, phospholipase C (PLC)s are activated by various extracellular ligands and mediate intracellular signal transduction. PLCγ1 is involved in regulating various cancer cell functions. However, the precise in vivo link between PLCγ1 and cancer behavior remains undefined. To investigate the role of PLCγ1 in colorectal carcinogenesis, we generated an intestinal tissue-specific Plcg1 knock out (KO) in adenomatous polyposis coli (Apc) Min/+ mice. Plcg1 deficiency in ApcMin/+ mice showed earlier death, with a higher colorectal tumor incidence in both number and size than in wild-type mice. Mechanistically, inhibition of PLCγ1 increased the levels of its substrate phosphoinositol 4,5-bisphosphate (PIP2) at the plasma membrane and promoted the activation of Wnt receptor low-density lipoprotein receptor-related protein 6 (LRP6) by glycogen synthase kinase 3β (GSK3β) to enhance β-catenin signaling. Enhanced cell proliferation and Wnt/β-catenin signaling were observed in colon tumors from Plcg1 KO mice. Furthermore, low PLCγ1 expression was associated with a poor prognosis of colon cancer patients. Collectively, we demonstrated the role of PLCγ1 in vivo as a tumor suppressor relationship between the regulation of the PIP2 level and Wnt/β-catenin-dependent intestinal tumor formation.
    Keywords:  GSK3β; LRP6; PIP2; PLCγ1; Tumor suppressor
    DOI:  https://doi.org/10.1016/j.bbrc.2021.09.012
  6. Aging Dis. 2021 Sep;12(6): 1423-1437
      Inflammatory bowel disease (IBD) remains a severe disease for most patients, with its incidence and prevalence increasingly globally. Currently, there is no effective treatments for IBD, and traditional treatments have multiple side effects. Therefore, novel therapeutic strategies or alternative drugs are urgently needed. Previous studies have shown that mesenchymal stem cell-derived exosomes have exhibited promising therapeutic effects on inflammatory disease. Here, we performed intravenous injection of human adipose mesenchymal stem cell (hADSC)-derived exosomes (hADSC-Exo) in a DSS-induced IBD mouse model and found that hADSC-Exo promoted functional recovery, downregulated inflammatory responses, reduced intestine cell apoptosis, increased epithelial regeneration and maintained intestinal barrier integrity. Moreover, we established a colon organoid, hADSC-Exo and TNF-α co-cultured system to explore the protective effect of hADSC-Exo on integrity of intestine mucosa and epithelial regeneration. We showed that hADSC-Exo not only can promote the proliferation and regeneration of Lgr5+ ISCs and epithelial cells but also ameliorate the inflammation damage in TNF-α induced inflammatory damaged mice colon organoids. Taken together, our findings indicate that hADSC-Exo protects intestine integrity, activates intestine epithelial cell and ISCs proliferation, suggesting that hADSC-Exo might be a potential effective treatment approach for IBD. We also provide a theoretical basis for new therapeutic strategies for cell-free therapy in inflammatory bowel disease.
    Keywords:  Exosome; Human adipose mesenchymal stem cell (hADSC); Inflammatory bowel disease (IBD); epithelial cell; intestinal stem cell (ISC)
    DOI:  https://doi.org/10.14336/AD.2021.0601
  7. Proc Natl Acad Sci U S A. 2021 Sep 28. pii: e2011411118. [Epub ahead of print]118(39):
      Early stages of colorectal cancer (CRC) development are characterized by a complex rewiring of transcriptional networks resulting in changes in the expression of multiple genes. Here, we demonstrate that the deletion of a poorly studied tetraspanin protein Tspan6 in Apcmin/+ mice, a well-established model for premalignant CRC, resulted in increased incidence of adenoma formation and tumor size. We demonstrate that the effect of Tspan6 deletion results in the activation of EGF-dependent signaling pathways through increased production of the transmembrane form of TGF-α (tmTGF-α) associated with extracellular vesicles. This pathway is modulated by an adaptor protein syntenin-1, which physically links Tspan6 and tmTGF-α. In support of this, the expression of Tspan6 is frequently decreased or lost in CRC, and this correlates with poor survival. Furthermore, the analysis of samples from the epidermal growth factor receptor (EGFR)-targeting clinical trial (COIN trial) has shown that the expression of Tspan6 in CRC correlated with better patient responses to EGFR-targeted therapy involving Cetuximab. Importantly, Tspan6-positive patients with tumors in the proximal colon (right-sided) and those with KRAS mutations had a better response to Cetuximab than the patients that expressed low Tspan6 levels. These results identify Tspan6 as a regulator of CRC development and a potential predictive marker for EGFR-targeted therapies in CRC beyond RAS pathway mutations.
    Keywords:  APCmin; EGFR; TGF alpha; colorectal cancer; tetraspanin
    DOI:  https://doi.org/10.1073/pnas.2011411118
  8. Ann Transl Med. 2021 Aug;9(16): 1317
      Background: Colorectal cancer (CRC) is one of the most common cancers worldwide with high rates of invasiveness and mortality. DAB2IP (DOC2/DAB2 interactive protein) is a member of the RAS-GTPase-activating protein (RAS-GAP) family that shows a suppressive effect on cancer progression, is downregulated in several cancers. However, the role of DAB2IP in CRC remains elusive.Methods: Expression of DAB2IP was evaluated in human CRC tissues using immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (qRT-PCR) and immunoblotting. Knockdown and overexpression of DAB2IP in CRC cells were achieved by transfecting siRNAs and DAB2IP expression vectors and assessed by qRT-PCR and immunoblotting. CCK-8, colony formation, wound-healing, and transwell assays were used to evaluate CRC cell growth, migration, and sensitivity to chemotherapeutic drugs. The cell cycle was analyzed by propidium iodide (PI) staining and flow cytometry. Cell apoptosis was evaluated by Annexin V-DAPI double staining and flow cytometry. The effect of DAB2IP overexpression on tumor formation was explored by an in vivo tumorigenesis assay. Finally, immunoblotting was performed to examine the molecules related to the action of DAB2IP in CRC.
    Results: Compared with para-cancer tissues, there was a marked decrease of DAB2IP expression in surgically excised CRCs. In cultured CRC cells, enforced expression of DAB2IP inhibited cell growth and migration and sensitized the cells to DNA-acting cisplatin, oxaliplatin, and doxorubicin but not 5-fluorouracil (5-FU). In contrast, knockdown of DAB2IP produced the opposite effect. Moreover, DAB2IP overexpression hindered tumor growth in vivo. We further found that DAB2IP regulated the expression of cell growth, epithelial-mesenchymal transition (EMT), and apoptosis-related proteins in CRC cells and inhibited the phosphorylation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK).
    Conclusions: Expression of DAB2IP inhibited CRC cell growth and migration and sensitized CRC cells to chemotherapeutic drugs. Inhibition of the phosphorylation of AKT and ERK is associated with the effects of DAB2IP expression. Restoration of DAB2IP expression may be a novel target for treating CRC.
    Keywords:  Colorectal cancer (CRC); DAB2IP; cell growth; cell migration; chemosensitivity
    DOI:  https://doi.org/10.21037/atm-21-3474
  9. Cancer Discov. 2021 Sep 13.
      The WNT signaling pathway is a critical regulator of development and adult tissue homeostasis and becomes dysregulated in many cancer types. Although hyperactivation of WNT signaling is common, the type and frequency of genetic WNT pathway alterations can vary dramatically between different cancers, highlighting possible cancer-specific mechanisms for WNT-driven disease. In this review, we discuss how WNT pathway disruption contributes to tumorigenesis in different organs and how WNT affects the tumor cell and immune microenvironment. Finally, we describe recent and ongoing efforts to target oncogenic WNT signaling as a therapeutic strategy. SIGNIFICANCE: WNT signaling is a fundamental regulator of tissue homeostasis and oncogenic driver in many cancer types. In this review, we highlight recent advances in our understanding of WNT signaling in cancer, particularly the complexities of WNT activation in distinct cancer types, its role in immune evasion, and the challenge of targeting the WNT pathway as a therapeutic strategy.
    DOI:  https://doi.org/10.1158/2159-8290.CD-21-0190