bims-inflin Biomed News
on Inflammasome and infection
Issue of 2024–09–01
three papers selected by
Juliane Cristina Ribeiro Fernandes, Faculdade de Medicina de Ribeirão Preto



  1. Nat Cell Biol. 2024 Aug 26.
      The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
    DOI:  https://doi.org/10.1038/s41556-024-01474-z
  2. Cell Rep. 2024 Aug 27. pii: S2211-1247(24)01039-8. [Epub ahead of print]43(9): 114688
      The NLRP3 inflammasome promotes inflammation in disease, yet the full repertoire of mechanisms regulating its activity is not well delineated. Among established regulatory mechanisms, covalent modification of NLRP3 has emerged as a common route for the pharmacological inactivation of this protein. Here, we show that inhibition of the glycolytic enzyme phosphoglycerate kinase 1 (PGK1) results in the accumulation of methylglyoxal, a reactive metabolite whose increased levels decrease NLRP3 assembly and inflammatory signaling in cells. We find that methylglyoxal inactivates NLRP3 via a non-enzymatic, covalent-crosslinking-based mechanism, promoting inter- and intraprotein MICA (methyl imidazole crosslink between cysteine and arginine) posttranslational linkages within NLRP3. This work establishes NLRP3 as capable of sensing a host of electrophilic chemicals, both exogenous small molecules and endogenous reactive metabolites, and suggests a mechanism by which glycolytic flux can moderate the activation status of a central inflammatory signaling pathway.
    Keywords:  CP: Immunology; CP: Metabolism; MICA modification; NLRP3; PGK1; covalent; glycolysis; inflammasome; inflammation; methylglyoxal
    DOI:  https://doi.org/10.1016/j.celrep.2024.114688
  3. J Transl Med. 2024 Aug 28. 22(1): 796
       BACKGROUND: Liver surgery during the perioperative period often leads to a significant complication known as hepatic ischemia-reperfusion (I/R) injury. Hepatic I/R injury is linked to the innate immune response. The cGAS-STING pathway triggers the activation of innate immune through the detection of DNA within cells. Nevertheless, the precise mechanism and significance of the cGAS-STING pathway in hepatic I/R injury are yet to be investigated.
    METHODS: Mouse model of hepatic I/R injury was used in the C57BL/6 WT mice and the STING knockout (STING-KO) mice. In addition, purified primary hepatocytes were used to construct oxygen-glucose deprivation reperfusion (OGD-Rep) treatment models.
    RESULTS: Our research revealed a notable increase in mRNA and protein levels of cGAS and STING in liver during I/R injury. Interestingly, the lack of STING exhibited a safeguarding impact on hepatic I/R injury by suppressing the elevation of liver enzymes, liver cell death, and inflammation. Furthermore, pharmacological cGAS and STING inhibition recapitulated these phenomena. Macrophages play a crucial role in the activation of the cGAS-STING pathway during hepatic I/R injury. The cGAS-STING pathway experiences a significant decrease in activity and hepatic I/R injury is greatly diminished following the elimination of macrophages. Significantly, we demonstrate that the activation of the cGAS-STING pathway is primarily caused by the liberation of mitochondrial DNA (mtDNA) rather than nuclear DNA (nDNA). Moreover, the safeguarding of the liver against I/R injury is also attributed to the hindrance of mtDNA release through the utilization of inhibitors targeting mPTP and VDAC oligomerization.
    CONCLUSIONS: The results of our study suggest that the release of mtDNA plays a significant role in causing damage to liver by activating the cGAS-STING pathway during I/R injury. Furthermore, inhibiting the release of mtDNA can provide effective protection against hepatic I/R injury.
    Keywords:  Hepatic ischemia-reperfusion injury; Innate immunity; STING; cGAS; mtDNA
    DOI:  https://doi.org/10.1186/s12967-024-05588-8