bims-inflin Biomed News
on Inflammasome and infection
Issue of 2024–07–07
four papers selected by
Juliane Cristina Ribeiro Fernandes, Faculdade de Medicina de Ribeirão Preto



  1. Am J Reprod Immunol. 2024 Jul;92(1): e13893
       PROBLEM: Vulvovaginal candidiasis (VVC) is a common mucosal fungal infection, and Candida albicans is the main causative agent. The NLRP3 inflammasome plays an important role in VVC, but the underlying mechanism is unknown.
    METHOD OF STUDY: Vaginal epithelial cells were divided into three groups: control, C. albicans strain SC5314 (wild-type, WT), and WT+ Matt Cooper Compound 950 (MCC950, a specific NLRP3 inhibitor). After human vaginal epithelial cells were pretreated with 1 µmol/L MCC950 for 2 h, C. albicans (MOI = 1) was cocultured with the human vaginal epithelial cells for 12 h. The cell supernatants were collected, LDH was detected, and the IL-1β and IL-18 levels were determined by ELISA. The expression of the pyroptosis-related proteins NLRP3, Caspase-1 p20 and GSDMD was measured by Western blotting analysis. The protein expression of the pyroptosis-related N-terminus of GSDMD (GSDMD-N) was detected by immunofluorescence.
    RESULTS: In this study, we showed that the WT C. albicans strain induced pyroptosis in vaginal epithelial cells, as indicated by the LDH and proinflammatory cytokine levels and the upregulated levels of the pyroptosis-related proteins NLRP3, Caspase-1 p20, and GSDMD-N. MCC950 reversed the changes in the expression of these proteins and proinflammatory cytokines in vaginal epithelial cells.
    CONCLUSION: C. albicans activated the NLRP3 inflammasome to induce vaginal epithelial cell pyroptosis. MCC950 inhibited the NLRP3 inflammasome, reduced vaginal epithelial cell pyroptosis, and decreased the release of inflammatory cytokines.
    Keywords:  Candida albicans; NLRP3 inflammasome; pyroptosis; vulvovaginal candidiasis
    DOI:  https://doi.org/10.1111/aji.13893
  2. Vet Microbiol. 2024 Jun 20. pii: S0378-1135(24)00182-2. [Epub ahead of print]295 110160
      Infection with Glaesserella parasuis, the primary pathogen behind Glässer's disease, is often associated with diverse clinical symptoms, including serofibrinous polyserositis, arthritis, and meningitis. Autophagy plays a dual role in bacterial infections, exerting either antagonistic or synergistic effects depending on the nature of the pathogen. Our previous studies have demonstrated that autophagy serves as a defense mechanism, combating inflammation and invasion caused by infection of highly virulent G. parasuis. However, the precise mechanisms remain to be elucidated. Pathogens exhibit distinct interactions with inflammasomes and autophagy processes. Herein, we explored the effect of autophagy on inflammasomes during G. parasuis infection. We found that G. parasuis infection triggers NLRP3-dependent pro-CASP-1-IL-18/IL-1β processing and maturation pathway, resulting in increased release of IL-1β and IL-18. Inhibition of autophagy enhances NLRP3 inflammasome activity, whereas stimulation of autophagy restricts it during G. parasuis infection. Furthermore, assembled NLRP3 inflammasomes undergo ubiquitination and recruit the autophagic adaptor, p62, facilitating their sequestration into autophagosomes during G. parasuis infection. These results suggest that the induction of autophagy mitigates inflammation by eliminating overactive NLRP3 inflammasomes during G. parasuis infection. Our research uncovers a mechanism whereby G. parasuis infection initiates inflammatory responses by promoting the assembly of the NLRP3 inflammasomes and activating NLRP3-CASP-1, both of which processes are downregulated by autophagy. This suggests that pharmacological manipulation of autophagy could be a promising approach to modulate G. parasuis-induced inflammatory responses.
    Keywords:  Autophagy; CASP-1; Glaesserella parasuis; Inflammasome; NLRP3
    DOI:  https://doi.org/10.1016/j.vetmic.2024.110160
  3. Cell Death Dis. 2024 Jul 04. 15(7): 479
      TLR4 and TNFR1 signalling promotes potent proinflammatory signal transduction events, thus, are often hijacked by pathogenic microorganisms. We recently reported that myeloid cells retaliate Yersinia blockade of TAK1/IKK signalling by triggering RIPK1-dependent caspase-8 activation that promotes downstream GSDMD and GSDME-mediated pyroptosis in macrophages and neutrophils respectively. However, the upstream signalling events for RIPK1 activation in these cells are not well defined. Here, we demonstrate that unlike in macrophages, RIPK1-driven pyroptosis and cytokine priming in neutrophils are driven through TNFR1 signalling, while TLR4-TRIF signalling is dispensable. Furthermore, we demonstrate that activation of RIPK1-dependent pyroptosis in neutrophils during Yersinia infection requires IFN-γ priming, which serves to induce surface TNFR1 expression and amplify soluble TNF secretion. In contrast, macrophages utilise both TNFR1 and TLR4-TRIF signalling to trigger cell death, but only require TRIF but not autocrine TNFR1 for cytokine production. Together, these data highlight the emerging theme of cell type-specific regulation in cell death and immune signalling in myeloid cells.
    DOI:  https://doi.org/10.1038/s41419-024-06871-8
  4. Acta Trop. 2024 Jul 02. pii: S0001-706X(24)00195-5. [Epub ahead of print] 107313
      Post Kala-azar dermal leishmaniasis (PKDL) arises as a significant dermal sequel following Visceral leishmaniasis (VL) caused by protozoan parasite Leishmania donovani (LD). PKDL acts as a significant constrain for VL elimination serving as a crucial reservoir for LD. PKDL patients exhibit depigmented macular and papular lesions on their skin, which results in social discrimination due to loss of natural skin color. Inflammatory reactions, prevalent in both VL and PKDL, potentially lead to tissue damage in areas harboring the parasite. Disruption of the immune-inflammasomal network not only facilitates LD persistence but also leads to the skin hypopigmentation seen in PKDL, impacting social well-being. Activation of inflammasomal markers like STAT1, NLRP1, NLRP3, AIM2, CASP11, and NLRP12 have been identified as a common host-defense mechanism across various Leishmania infections. Conversely, Leishmania modulates inflammasome activation to sustain its presence within the host. Nevertheless, in specific instances of Leishmania infection, inflammasome activation can worsen disease pathology by promoting parasite proliferation and persistence. This study encompasses recent transcriptomic analyses conducted between 2016-2023 on human and murine subjects afflicted with VL/PKDL, elucidating significant alterations in inflammasomal markers in both conditions. It offers a comprehensive understanding how these markers contribute in disease progression, drawing upon available literature for logical analysis. Furthermore, our analysis identifies validated miRNA network that could potentially disrupt this crucial immune-inflammasomal network, thereby offering a plausible explanation on how secreted LD-factors could enable membrane-bound LD, isolated from the host cytoplasm, to modulate cytoplasmic inflammasomal markers. Insights from this study could guide the development of host-directed therapeutics to impede transmission and address hypopigmentation, thereby mitigating the social stigma associated with PKDL.
    Keywords:  Genome wide transcriptomics; Inflammasomes; Post Kala-azar dermal leishmaniasis; Visceral Leishmaniasis; mRNA-miRNA networks; miRNA
    DOI:  https://doi.org/10.1016/j.actatropica.2024.107313