bims-inflin Biomed News
on Inflammasome and infection
Issue of 2023–12–31
two papers selected by
Juliane Cristina Ribeiro Fernandes, Faculdade de Medicina de Ribeirão Preto



  1. Free Radic Biol Med. 2023 Dec 25. pii: S0891-5849(23)01186-3. [Epub ahead of print]
      Damage-associated molecular patterns (DAMPs) such as extracellular ATP and nigericin (a bacterial toxin) not only act as potassium ion (K+) efflux inducers to activate NLRP3 inflammasome, leading to pyroptosis, but also induce cell death independently of NLRP3 expression. However, the roles of energy metabolism in determining NLRP3-dependent pyroptosis and -independent necrosis upon K+ efflux are incompletely understood. Here we established cellular models by pharmacological blockade of energy metabolism, followed by stimulation with a K+ efflux inducer (ATP or nigericin). Two energy metabolic inhibitors, namely CPI-613 that targets α-ketoglutarate dehydrogenase and pyruvate dehydrogenase (a rate-limiting enzyme) and 2-deoxy-d-glucose (2-DG) that targets hexokinase, are recruited in this study, and Nlrp3 gene knockout macrophages were used. Our data showed that CPI-613 and 2-DG dose-dependently inhibited NLRP3 inflammasome activation, but profoundly increased cell death in the presence of ATP or nigericin. The cell death was K+ efflux-induced but NLRP3-indendent, which was associated with abrupt reactive oxygen species (ROS) production, reduction of mitochondrial membrane potential, and oligomerization of mitochondrial proteins, all indicating mitochondrial damage. Notably, the cell death induced by K+ efflux and blockade of energy metabolism was distinct from pyroptosis, apoptosis, necroptosis or ferroptosis. Furthermore, fructose 1,6-bisphosphate, a high-energy intermediate of glycolysis, significantly suppressed CPI-613+nigericin-induced mitochondrial damage and cell death. Collectively, our data show that energy deficiency diverts NLRP3 inflammasome activation-dependent pyroptosis to Nlrp3-independent necrosis upon K+ efflux inducers, which can be dampened by high-energy intermediate, highlighting a critical role of energy metabolism in cell survival and death under inflammatory conditions.
    Keywords:  Fructose-1,6-bisphosphate; Glucose metabolism; Mitochondrial damage; NLRP3 inflammasome activation; Potassium efflux; Reactive oxygen species
    DOI:  https://doi.org/10.1016/j.freeradbiomed.2023.12.029
  2. J Immunol. 2023 Dec 27. pii: ji2300440. [Epub ahead of print]
      Inflammasome-mediated caspase-1 activation facilitates innate immune control of Plasmodium in the liver, thereby limiting the incidence and severity of clinical malaria. However, caspase-1 processing occurs incompletely in both mouse and human hepatocytes and precludes the generation of mature IL-1β or IL-18, unlike in other cells. Why this is so or how it impacts Plasmodium control in the liver has remained unknown. We show that an inherently reduced expression of the inflammasome adaptor molecule apoptosis-associated specklike protein containing CARD (ASC) is responsible for the incomplete proteolytic processing of caspase-1 in murine hepatocytes. Transgenically enhancing ASC expression in hepatocytes enabled complete caspase-1 processing, enhanced pyroptotic cell death, maturation of the proinflammatory cytokines IL-1β and IL-18 that was otherwise absent, and better overall control of Plasmodium infection in the liver of mice. This, however, impeded the protection offered by live attenuated antimalarial vaccination. Tempering ASC expression in mouse macrophages, on the other hand, resulted in incomplete processing of caspase-1. Our work shows how caspase-1 activation and function in host cells are fundamentally defined by ASC expression and offers a potential new pathway to create better disease and vaccination outcomes by modifying the latter.
    DOI:  https://doi.org/10.4049/jimmunol.2300440