bims-inflin Biomed News
on Inflammasome and infection
Issue of 2023–11–05
four papers selected by
Juliane Cristina Ribeiro Fernandes, Faculdade de Medicina de Ribeirão Preto



  1. Nat Immunol. 2023 Oct 30.
      S100A8/S100A9 is a proinflammatory mediator released by myeloid cells during many acute and chronic inflammatory disorders. However, the precise mechanism of its release from the cytosolic compartment of neutrophils is unclear. Here, we show that E-selectin-induced rapid S100A8/S100A9 release during inflammation occurs in an NLRP3 inflammasome-dependent fashion. Mechanistically, E-selectin engagement triggers Bruton's tyrosine kinase-dependent tyrosine phosphorylation of NLRP3. Concomitant potassium efflux via the voltage-gated potassium channel KV1.3 mediates ASC oligomerization. This is followed by caspase 1 cleavage and downstream activation of pore-forming gasdermin D, enabling cytosolic release of S100A8/S100A9. Strikingly, E-selectin-mediated gasdermin D pore formation does not result in cell death but is a transient process involving activation of the ESCRT III membrane repair machinery. These data clarify molecular mechanisms of controlled S100A8/S100A9 release from neutrophils and identify the NLRP3/gasdermin D axis as a rapid and reversible activation system in neutrophils during inflammation.
    DOI:  https://doi.org/10.1038/s41590-023-01656-1
  2. PLoS Pathog. 2023 Nov;19(11): e1011747
      Buruli ulcer is an emerging chronic infectious skin disease caused by Mycobacterium ulcerans. Mycolactone, an exotoxin produced by the bacterium, is the only identified virulence factor so far, but the functions of this toxin and the mechanisms of disease progression remain unclear. By interfering Sec61 translocon, mycolactone inhibits the Sec61-dependent co-translational translocation of newly synthesized proteins, such as induced cytokines and immune cell receptors, into the endoplasmic reticulum. However, in regard to IL-1β, which is secreted by a Sec61-independent mechanism, mycolactone has been shown to induce IL-1β secretion via activation of inflammasomes. In this study, we clarified that cytokine induction, including that of IL-1β, in infected macrophages was suppressed by mycolactone produced by M. ulcerans subsp. shinshuense, despite the activation of caspase-1 through the inflammasome activation triggered in a manner independent of mycolactone. Intriguingly, mycolactone suppressed the expression of proIL-1β as well as TNF-α at the transcriptional level, suggesting that mycolactone of M. ulcerans subsp. shinshuense may exert additional inhibitory effect on proIL-1β expression. Remarkably, constitutively produced IL-18 was cleaved and mature IL-18 was actually released from macrophages infected with the causative mycobacterium. IL-18-deficient mice infected subcutaneously with M. ulcerans exhibited exacerbated skin inflammation during the course of disease progression. On the other hand, IL-1β controls bacterial multiplication in skin tissues. These results provide information regarding the mechanisms and functions of the induced cytokines in the pathology of Buruli ulcer.
    DOI:  https://doi.org/10.1371/journal.ppat.1011747
  3. Front Immunol. 2023 ;14 1270081
      Purinergic receptors and NOD-like receptor protein 3 (NLRP3) inflammasome regulate inflammation and viral infection, but their effects on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection remain poorly understood. Here, we report that the purinergic receptor P2X7 and NLRP3 inflammasome are cellular host factors required for SARS-CoV-2 infection. Lung autopsies from patients with severe coronavirus disease 2019 (COVID-19) reveal that NLRP3 expression is increased in host cellular targets of SARS-CoV-2 including alveolar macrophages, type II pneumocytes and syncytia arising from the fusion of infected macrophages, thus suggesting a potential role of NLRP3 and associated signaling pathways to both inflammation and viral replication. In vitro studies demonstrate that NLRP3-dependent inflammasome activation is detected upon macrophage abortive infection. More importantly, a weak activation of NLRP3 inflammasome is also detected during the early steps of SARS-CoV-2 infection of epithelial cells and promotes the viral replication in these cells. Interestingly, the purinergic receptor P2X7, which is known to control NLRP3 inflammasome activation, also favors the replication of D614G and alpha SARS-CoV-2 variants. Altogether, our results reveal an unexpected relationship between the purinergic receptor P2X7, the NLRP3 inflammasome and the permissiveness to SARS-CoV-2 infection that offers novel opportunities for COVID-19 treatment.
    Keywords:  COVID-19; NLRP3; P2X7; SARS-CoV-2; inflammasome
    DOI:  https://doi.org/10.3389/fimmu.2023.1270081
  4. Front Cell Infect Microbiol. 2023 ;13 1269329
       Background: Influenza A virus (IAV) infection poses a persistent global health challenge, necessitating a nuanced grasp of host immune responses for optimal interventions. While the interplay between aging, immunosenescence, and IAV is recognized as key in severe lower respiratory tract infections, the role of specific patient attributes in shaping innate immune reactions and inflammasome activity during IAV infection remains under-investigated. In this study, we utilized an ex vivo infection model of human lung tissues with H3N2 IAV to discern relationships among patient demographics, IAV nucleoprotein (NP) expression, toll-like receptor (TLR) profiles, PD-1/PD-L1 markers, and cytokine production.
    Methods: Our cohort consisted of thirty adult patients who underwent video-assisted thoracoscopic surgery during 2018-2019. Post-surgical lung tissues were exposed to H3N2 IAV for ex vivo infections, and the ensuing immune responses were profiled using flow cytometry.
    Results: We observed pronounced IAV activity within lung cells, as indicated by marked NP upregulation in both epithelial cells (P = 0.022) and macrophages (P = 0.003) in the IAV-exposed group relative to controls. Notably, interleukin-2 levels correlated with variations in TLR1 expression on epithelial cells and PD-L1 markers on macrophages. Age emerged as a modulating factor, dampening innate immune reactions, as evidenced by reduced interleukin-2 and interferon-γ concentrations (both adjusted P < 0.05). Intriguingly, a subset of participants with pronounced tumor necrosis factor-alpha post-mock infection (Cluster 1) showed attenuated cytokine responses in contrast to their counterparts in Cluster 2 and Cluster 3 (all adjusted P < 0.05). Individuals in Cluster 2, characterized by a low post-mock infection NP expression in macrophages, exhibited reduced variations in both NP and TLR1-3 expressions on these cells and a decreased variation in interleukin-2 secretion in comparison to their Cluster 3 counterparts, who were identified by their elevated NP macrophage expression (all adjusted P < 0.05).
    Conclusion: Our work elucidates the multifaceted interplay of patient factors, innate immunity, and inflammasome responses in lung tissues subjected to ex vivo H3N2 IAV exposure, reflecting real-world lower respiratory tract infections. While these findings provide a foundation for tailored therapeutic strategies, supplementary studies are requisite for thorough validation and refinement.
    Keywords:  cytokine; ex vivo infection; influenza A virus; programmed death 1/programmed death-ligand 1; toll-like receptor
    DOI:  https://doi.org/10.3389/fcimb.2023.1269329