bims-indpro Biomed News
on Intrinsically disordered proteins
Issue of 2023–01–22
seventeen papers selected by
Sara Mingu, Johannes Gutenberg University



  1. Biomolecules. 2023 Jan 11. pii: 151. [Epub ahead of print]13(1):
      Biomolecular condensation and phase separation are increasingly understood to play crucial roles in cellular compartmentalization and spatiotemporal regulation of cell machinery implicated in function and pathology. A key aspect of current research is to gain insight into the underlying physical mechanisms of these processes. Accordingly, concepts of soft matter and polymer physics, the thermodynamics of mixing, and material science have been utilized for understanding condensation mechanisms of multivalent macromolecules resulting in viscoelastic mesoscopic supramolecular assemblies. Here, we focus on two topological concepts that have recently been providing key mechanistic understanding in the field. First, we will discuss how percolation provides a network-topology-related framework that offers an interesting paradigm to understand the complex networking of dense 'connected' condensate structures and, therefore, their phase behavior. Second, we will discuss the idea of entanglement as another topological concept that has deep roots in polymer physics and important implications for biomolecular condensates. We will first review some historical developments and fundamentals of these concepts, then we will discuss current advancements and recent examples. Our discussion ends with a few open questions and the challenges to address them, hinting at unveiling fresh possibilities for the modification of existing knowledge as well as the development of new concepts relevant to condensate science.
    Keywords:  RNA; biomolecular condensates; entanglement; intrinsically disordered proteins; percolation; polymer physics; polymer rheology; topology
    DOI:  https://doi.org/10.3390/biom13010151
  2. Methods Enzymol. 2023 ;pii: S0076-6879(22)00402-5. [Epub ahead of print]678 299-330
      Intrinsically disordered proteins (IDPs) have a broad energy landscape and consequently sample many different conformations in solution. The innate flexibility of IDPs is exploited in their biological function, and in many instances allows a single IDP to regulate a range of processes in vivo. Due to their highly flexible nature, characterizing the structural properties of IDPs is not straightforward. Often solution-based methods such as Nuclear Magnetic Resonance (NMR), Förster Resonance Energy Transfer (FRET), and Small-Angle X-ray Scattering (SAXS) are used. SAXS is indeed a powerful technique to study the structural and conformational properties of IDPs in solution, and from the obtained SAXS spectra, information about the average size, shape, and extent of oligomerization can be determined. In this chapter, we will introduce model-free methods that can be used to interpret SAXS data and introduce methods that can be used to interpret SAXS data beyond analytical models, for example, by using atomistic and different levels of coarse-grained models in combination with molecular dynamics (MD) and Monte Carlo simulations.
    Keywords:  All-atom; BioSAXS; Coarse-grained; Computer simulations; Ensemble optimization method; IDPs; Intrinsically disordered proteins; Molecular dynamics; Monte Carlo; Proteins; Radius of gyration
    DOI:  https://doi.org/10.1016/bs.mie.2022.09.021
  3. Biology (Basel). 2023 Jan 03. pii: 79. [Epub ahead of print]12(1):
      Intrinsically disordered proteins (IDPs) are involved in most crucial cellular processes. However, they lack a well-defined fold hampering the investigation of their structural ensemble and interactions. Suitable biophysical methods able to manage their inherent flexibility and broad conformational ensemble are scarce. Here, we used rapid scan (RS) electron paramagnetic resonance (EPR) spectroscopy to study the intermolecular interactions of the IDP α-synuclein (aS). aS aggregation and fibril deposition is the hallmark of Parkinson's disease, and specific point mutations, among them A30P and A53T, were linked to the early onset of the disease. To understand the pathological processes, research intensively investigates aS aggregation kinetics, which was reported to be accelerated in the presence of ethanol. Conventional techniques fail to capture these fast processes due to their limited time resolution and, thus, lose kinetic information. We have demonstrated that RS EPR spectroscopy is suitable for studying aS aggregation by resolving underlying kinetics and highlighting differences in fibrillization behavior. RS EPR spectroscopy outperforms traditional EPR methods in terms of sensitivity by a factor of 5 in our case while significantly reducing data acquisition time. Thus, we were able to sample short time intervals capturing single events taking place during the aggregation process. Further studies will therefore be able to shed light on biological processes proceeding on fast time scales.
    Keywords:  aggregation; electron paramagnetic resonance (EPR) spectroscopy; intermolecular interactions; intrinsically disordered protein (IDP); rapid scan (RS); α-synuclein (aS)
    DOI:  https://doi.org/10.3390/biology12010079
  4. Commun Biol. 2023 Jan 18. 6(1): 63
      Transcription depends on complex networks, where folded hub proteins interact with intrinsically disordered transcription factors undergoing coupled folding and binding. For this, local residual structure, a prototypical feature of intrinsic disorder, is key. Here, we dissect the unexplored functional potential of residual structure by comparing structure, kinetics, and thermodynamics within the model system constituted of the DREB2A transcription factor interacting with the αα-hub RCD1-RST. To maintain biological relevance, we developed an orthogonal evolutionary approach for the design of variants with varying amounts of structure. Biophysical analysis revealed a correlation between the amount of residual helical structure and binding affinity, manifested in altered complex lifetime due to changed dissociation rate constants. It also showed a correlation between helical structure in free and bound DREB2A variants. Overall, this study demonstrated how evolution can balance and fine-tune residual structure to regulate complexes in coupled folding and binding, potentially affecting transcription factor competition.
    DOI:  https://doi.org/10.1038/s42003-023-04445-6
  5. Biomolecules. 2023 Jan 07. pii: 124. [Epub ahead of print]13(1):
      Intense study of intrinsically disordered proteins (IDPs) did not begin in earnest until the late 1990s when a few groups, working independently, convinced the community that these 'weird' proteins could have important functions. Over the past two decades, it has become clear that IDPs play critical roles in a multitude of biological phenomena with prominent examples including coordination in signaling hubs, enabling gene regulation, and regulating ion channels, just to name a few. One contributing factor that delayed appreciation of IDP functional significance is the experimental difficulty in characterizing their dynamic conformations. The combined application of multiple methods, termed integrative structural biology, has emerged as an essential approach to understanding IDP phenomena. Here, we review some of the recent applications of the integrative structural biology philosophy to study IDPs.
    Keywords:  flexible; integrative structural biology; intrinsically disordered proteins; protein function; unfolded; unstructured
    DOI:  https://doi.org/10.3390/biom13010124
  6. J Magn Reson. 2023 Jan;pii: S1090-7807(22)00176-8. [Epub ahead of print]346 107318
      Diverse cellular processes have been observed or predicted to occur in biomolecular condensates, which are comprised of proteins and nucleic acids that undergo liquid-liquid phase separation (LLPS). Protein-driven LLPS often involves weak, multivalent interactions between intrinsically disordered regions (IDRs). Due to their inherent lack of defined tertiary structures, NMR has been a powerful resource for studying the behavior and interactions of IDRs in condensates. While IDRs in proteins are necessary for phase separation, core proteins enriched in condensates often contain structured domains that are essential for their function and contribute to phase separation. How phase separation can affect the structure and conformational dynamics of structured domains is critical for understanding how biochemical reactions can be effectively regulated in cellular condensates. In this perspective, we discuss the consequences phase separation can have on structured domains and outline NMR observables we believe are useful for assessing protein structure and dynamics in condensates.
    DOI:  https://doi.org/10.1016/j.jmr.2022.107318
  7. Biochem Soc Trans. 2023 Jan 18. pii: BST20220342. [Epub ahead of print]
      Interaction scaffolds that selectively recognize disordered protein strongly shape protein interactomes. An important scaffold of this type that contributes to transcription is the TFIIS N-terminal domain (TND). The TND is a five-helical bundle that has no known enzymatic activity, but instead selectively reads intrinsically disordered sequences of other proteins. Here, we review the structural and functional properties of TNDs and their cognate disordered ligands known as TND-interacting motifs (TIMs). TNDs or TIMs are found in prominent members of the transcription machinery, including TFIIS, super elongation complex, SWI/SNF, Mediator, IWS1, SPT6, PP1-PNUTS phosphatase, elongin, H3K36me3 readers, the transcription factor MYC, and others. We also review how the TND interactome contributes to the regulation of transcription. Because the TND is the most significantly enriched fold among transcription elongation regulators, TND- and TIM-driven interactions have widespread roles in the regulation of many transcriptional processes.
    Keywords:  intrinsically disordered proteins; molecular scaffolds; structural biology; transcription
    DOI:  https://doi.org/10.1042/BST20220342
  8. Biophys Rev. 2022 Dec;14(6): 1487-1493
      Intrinsically disordered regions in proteins have been shown to be important in protein function. However, not all proteins contain the same amount of intrinsic disorder. The variation in the levels of intrinsic disorder in different types of proteins has been extensively studied over the last two decades. It is now known that the levels of intrinsic disorder vary in proteins across organisms, functions, diseases, and cellular locations. This review consolidates the known trends in the abundance of intrinsic disorder identified in groups of proteins across varying conditions and functions. It also presents new data towards the understanding of intrinsic disorder in cell type-specific proteins.
    Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-01016-7.
    Keywords:  Cell type-specific proteins; Intrinsic disorder; Protein
    DOI:  https://doi.org/10.1007/s12551-022-01016-7
  9. Fac Rev. 2022 ;11 38
      The protein structure prediction problem is solved, at last, thanks in large part to the use of artificial intelligence. The structures predicted by AlphaFold and RoseTTAFold are becoming the requisite starting point for many protein scientists. New frontiers, such as the conformational sampling of intrinsically disordered proteins, are emerging.
    Keywords:  AlphaFold; RossTTAFold; protein structure; three-dimensional structure
    DOI:  https://doi.org/10.12703/r-01-0000020
  10. Biophys Rev. 2022 Dec;14(6): 1449-1472
      Advances in structural analysis by cryogenic electron microscopy (cryo-EM) and X-ray crystallography have revealed the tertiary structures of various chromatin-related proteins, including transcription factors, RNA polymerases, nucleosomes, and histone chaperones; however, the dynamic structures of intrinsically disordered regions (IDRs) in these proteins remain elusive. Recent studies using nuclear magnetic resonance (NMR), together with molecular dynamics (MD) simulations, are beginning to reveal dynamic structures of the general transcription factor TFIIH complexed with target proteins including the general transcription factor TFIIE, the tumor suppressor p53, the cell cycle protein DP1, the DNA repair factors XPC and UVSSA, and three RNA polymerases, in addition to the dynamics of histone tails in nucleosomes and histone chaperones. In complexes of TFIIH, the PH domain of the p62 subunit binds to an acidic string formed by the IDR in TFIIE, p53, XPC, UVSSA, DP1, and the RPB6 subunit of three RNA polymerases by a common interaction mode, namely extended string-like binding of the IDR on the positively charged surface of the PH domain. In the nucleosome, the dynamic conformations of the N-tails of histones H2A and H2B are correlated, while the dynamic conformations of the N-tails of H3 and H4 form a histone tail network dependent on their modifications and linker DNA. The acidic IDRs of the histone chaperones of FACT and NAP1 play important roles in regulating the accessibility to histone proteins in the nucleosome.
    Keywords:  General transcription factor; Intrinsically disordered protein; NMR; Nucleosome; TFIIH
    DOI:  https://doi.org/10.1007/s12551-022-01014-9
  11. Chemistry. 2023 Jan 17.
      Eukaryotic transcription factors (TFs) are the final integrators of a complex molecular feedback mechanism that interfaces with the genome, consolidating information for transcriptional regulation. TFs consist of both structured DNA-binding domains and long intrinsically disordered regions (IDRs) embedded with motifs linked to transcriptional control. It is now well established that the dynamic multifunctionality of IDRs is the basis for a wide spectrum of TF functions necessary to navigate and regulate the human genome. This review dissects the chemical features of TF IDRs that endow them with structural plasticity that is central to their functions in the nucleus. Sequence analysis of a set of over 1600 human TFs through AlphaFold was used to identify key features of their IDRs. Recent studies were then highlighted to illustrate IDR involvement in processes such as protein interactions, DNA binding and specificity, chromatin opening, and phase separation. To expand our understanding of TF functions, future directions are suggested for integrating experiments and simulations, from in vitro to living systems.
    Keywords:  Biophysics; DNA recognition; Structural biology; protein structures; protein-protein interactions
    DOI:  https://doi.org/10.1002/chem.202203369
  12. Biomolecules. 2022 Dec 20. pii: 4. [Epub ahead of print]13(1):
      The N-methyl-D-aspartate (NMDA)-sensitive glutamate receptor (NMDAR) helps assemble downstream signaling pathways through protein interactions within the postsynaptic density (PSD), which are mediated by its intracellular C-terminal domain (CTD). The most abundant NMDAR subunits in the brain are GluN2A and GluN2B, which are associated with a developmental switch in NMDAR composition. Previously, we used single molecule fluorescence resonance energy transfer (smFRET) to show that the GluN2B CTD contained an intrinsically disordered region with slow, hop-like conformational dynamics. The CTD from GluN2B also undergoes liquid-liquid phase separation (LLPS) with synaptic proteins. Here, we extend these observations to the GluN2A CTD. Sequence analysis showed that both subunits contain a form of intrinsic disorder classified as weak polyampholytes. However, only GluN2B contained matched patterning of arginine and aromatic residues, which are linked to LLPS. To examine the conformational distribution, we used discrete molecular dynamics (DMD), which revealed that GluN2A favors extended disordered states containing secondary structures while GluN2B favors disordered globular states. In contrast to GluN2B, smFRET measurements found that GluN2A lacked slow conformational dynamics. Thus, simulation and experiments found differences in the form of disorder. To understand how this affects protein interactions, we compared the ability of these two NMDAR isoforms to undergo LLPS. We found that GluN2B readily formed condensates with PSD-95 and SynGAP, while GluN2A failed to support LLPS and instead showed a propensity for colloidal aggregation. That GluN2A fails to support this same condensate formation suggests a developmental switch in LLPS propensity.
    Keywords:  discrete molecular dynamics; glutamate receptor; intrinsically disordered protein; liquid-liquid phase separation; single molecule fluorescence
    DOI:  https://doi.org/10.3390/biom13010004
  13. ACS Omega. 2023 Jan 10. 8(1): 357-364
      PacC is a key transcriptional regulator of human pathogenic fungus Trichophyton rubrum with pivotal roles in pH homeostasis and virulence. We report the first biophysical characterization of the C-terminal inhibitory tail of PacC, pertinent to its physiological role in maintaining the inactive state of PacC at acidic pH which undergoes conformational changes for its proteolytic removal and activation, at alkaline pH. To gain insights into the structural features of PacC that enable the required conformational flexibility, we performed gel filtration chromatography, dynamic light scattering, circular dichroism, and 1-anilino-8-naphthalenesulfonate binding and showed that the tail exhibits properties similar to intrinsically disordered proteins, as also predicted by bioinformatics tools. We demonstrate that the C-terminal tail is conformationally flexible and attains a molten globule-like state at extremely acidic pH and undergoes biphasic GdmCl-induced unfolding in a noncooperative manner with an intermediate X state. We hypothesize that the conformational plasticity of the C-terminal tail of PacC may play a significant role in modulating its pH-dependent transcriptional activation.
    DOI:  https://doi.org/10.1021/acsomega.2c04691
  14. Chem Rev. 2023 Jan 20.
      Stress granules (SGs) are cytosolic biomolecular condensates that form in response to cellular stress. Weak, multivalent interactions between their protein and RNA constituents drive their rapid, dynamic assembly through phase separation coupled to percolation. Though a consensus model of SG function has yet to be determined, their perceived implication in cytoprotective processes (e.g., antiviral responses and inhibition of apoptosis) and possible role in the pathogenesis of various neurodegenerative diseases (e.g., amyotrophic lateral sclerosis and frontotemporal dementia) have drawn great interest. Consequently, new studies using numerous cell biological, genetic, and proteomic methods have been performed to unravel the mechanisms underlying SG formation, organization, and function and, with them, a more clearly defined SG proteome. Here, we provide a consensus SG proteome through literature curation and an update of the user-friendly database RNAgranuleDB to version 2.0 (http://rnagranuledb.lunenfeld.ca/). With this updated SG proteome, we use next-generation phase separation prediction tools to assess the predisposition of SG proteins for phase separation and aggregation. Next, we analyze the primary sequence features of intrinsically disordered regions (IDRs) within SG-resident proteins. Finally, we review the protein- and RNA-level determinants, including post-translational modifications (PTMs), that regulate SG composition and assembly/disassembly dynamics.
    DOI:  https://doi.org/10.1021/acs.chemrev.2c00608
  15. Biophys Rev. 2022 Dec;14(6): 1513-1520
      Gaussia princeps luciferase (GLuc 18.2 kDa; 168 residues) is a marine copepod luciferase that emits a bright blue light when oxidizing coelenterazine (CTZ). GLuc is a small luciferase, attracting much attention as a potential reporter protein. However, compared to firefly and Renilla luciferases, which have been thoroughly characterized and are used in a wide range of applications, structural and biophysical studies of GLuc have been slow to appear. Here, we review the biophysical and mutational studies of GLuc's bioluminescence from a structural viewpoint, particularly in view of its recent NMR solution structure, where two homologous sequential repeats form two anti-parallel bundles, each made of four helices, grabbing a short N-terminal helix. Additionally, a long loop classified as an intrinsically disordered region separates the two bundles forming one side of a hydrophobic pocket that is most likely the binding/catalytic site. We compare the NMR-determined structure with a recent AlphaFold2 prediction. Overall, the AlphaFold2 structure was in line with the solution structure; however, it surprisingly revealed a possible, alternative conformation, where the N-terminal helix is replaced by a newly formed α helix in the C-terminal tail that is unfolded in the NMR structure. In addition, we discuss the results of previous mutational analysis focusing on a putative catalytic core identified by chemical shift perturbation analysis and molecular dynamics simulations performed using both the NMR and the AlphaFold2 structures. In particular, we discuss the role of the possible conformational change and the hydrophobic pocket in GLuc's activity. Overall, the discussion points toward GLuc's unexpected and unusual characteristics that appear to be much more flexible than traditional enzymes, resulting in a unique mode of catalysis to achieve CTZ oxidative decarboxylation.
    Supplementary Information: The online version contains supplementary material available at 10.1007/s12551-022-01025-6.
    Keywords:  Bioluminescence; Dynamic structure; Intrinsically disordered region (IDR); NMR
    DOI:  https://doi.org/10.1007/s12551-022-01025-6
  16. Curr Res Food Sci. 2023 ;6 100433
      In order to explore the functions of glycosylation of κ-Casein (κ-CN) in bovine milk, unglycosylated (UG) and twice glycosylated (2G) forms of κ-CN B were purified by selective precipitation followed by anion exchange chromatography from κ-CN BB milk and tested for their amyloid fibril formation and morphology, oligomerisation states and protein structure. The diameter of self-assembled κ-CN B aggregates of both glyco-form were shown for the first time to be in the same 26.0-28.7 nm range for a 1 mg mL-1 solution. The presence of two bound glycans in the protein structure of 2G κ-CN B led to a greater increase in the maximum amyloid fibril formation rate with increasing protein concentration and a difference in both length (82.0 ± 29.9 vs 50.3 ± 13.7 nm) and width (8.6 ± 2.1 vs 13.9 ± 2.5 nm) for fibril morphology compared to UG κ-CN B. The present results suggest that amyloid fibril formation proceeds at a slow but steady rate via the self-assembly of dissociated, monomeric κ-CN B proteins at concentrations of 0.22-0.44 mg mL-1. However amyloid fibril formation proceeds more rapidly via the assembly of either aggregated κ-CN present in a micelle-like form or dissociated monomeric κ-CN, packed into reorganised formational structures above the critical micellar concentration to form fibrils of differing width. The degree of glycosylation has no effect on the polarity of the adjacent environment, nor non-covalent and disulphide interactions between protein molecules when in the native form. Yet glycosylation can influence protein folding patterns of κ-CN B leading to a reduced tryptophan intrinsic fluorescence intensity for 2G compared to UG κ-CN B. These results demonstrate that glycosylation plays an important role in the modulation of aggregation states of κ-CN and contributes to a better understanding of the role of glycosylation in the formation of amyloid fibrils from intrinsically disordered proteins.
    Keywords:  Genetic variant; Glycan; Micelle-like aggregate; Protein aggregation; Self-assembled
    DOI:  https://doi.org/10.1016/j.crfs.2023.100433
  17. Methods Enzymol. 2023 ;pii: S0076-6879(22)00404-9. [Epub ahead of print]678 351-376
      Accurate protein structure predictions, enabled by recent advances in machine learning algorithms, provide an entry point to probing structural mechanisms and to integrating and querying many types of biochemical and biophysical results. Limitations in such protein structure predictions can be reduced and addressed through comparison to experimental Small Angle X-ray Scattering (SAXS) data that provides protein structural information in solution. SAXS data can not only validate computational predictions, but can improve conformational and assembly prediction to produce atomic models that are consistent with solution data and biologically relevant states. Here, we describe how to obtain protein structure predictions, compare them to experimental SAXS data and improve models to reflect experimental information from SAXS data. Furthermore, we consider the potential for such experimentally-validated protein structure predictions to broadly improve functional annotation in proteins identified in metagenomics and to identify functional clustering on conserved sites despite low sequence homology.
    Keywords:  BILBOMD; CASP-SAXS; FoXS; Hybrid method; Metagenomics; Protein flexibility; Protein structure prediction
    DOI:  https://doi.org/10.1016/bs.mie.2022.09.023