Med Oncol. 2025 May 31. 42(7): 228
Chimeric Antigen Receptor T-cell (CAR-T) therapy represents a groundbreaking advance in oncology, leveraging patient-specific immune cells to target malignant tumours precisely. By equipping T cells with synthetic receptors, CAR-T therapy achieves remarkable antitumor effects and offers hope for durable cancer control. However, several limitations persist, including antigen scarcity, immunosuppressive tumour microenvironments, and T-cell exhaustion. CRISPR-Cas9 gene editing has enhanced CAR-T potency by knocking out immune checkpoints (PD-1, CTLA-4) and improving persistence, while RNA interference (RNAi) silences immune-evasion genes (e.g. SOCS1). Nanozyme-based delivery systems enable precise CRISPR-Cas9 delivery (> 70% editing efficiency) and tumour targeting, overcoming instability and off-target effects. Innovations like SUPRA CARs, armoured CAR-T cells (e.g. IL-12/IL-21-secreting TRUCKs), and dual checkpoint inhibition synergize to reprogram the tumour microenvironment, reducing relapse by 40% in trials. Despite progress, high costs, manufacturing hurdles, and ethical concerns (e.g. germline editing risks) remain critical barriers. Emerging solutions include universal off-the-shelf CAR-Ts, hybrid nano-CRISPR systems, and AI-driven design, paving the way for scalable, personalised immunotherapy. This review highlights breakthroughs in CRISPR, RNAi, and nanotechnology, underscoring CAR-T therapy's transformative potential while addressing translational challenges for broader clinical adoption.
Keywords: CAR-T therapy; CRISPR-Cas9 in oncology; Cancer immunotherapy; Genetic engineering; Nanozymes in cancer; Tumour microenvironment