bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2023‒07‒02
thirteen papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Cancer Discov. 2023 Jun 30. OF1
      CXCL13+ TH and PD-1hi effector CD8+ T cells are high in tumors that respond to immune checkpoint blockade (ICB).
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2023-101
  2. Cell Metab. 2023 Jun 20. pii: S1550-4131(23)00213-9. [Epub ahead of print]
      Metabolic programming in the tumor microenvironment (TME) alters tumor immunity and immunotherapeutic response in tumor-bearing mice and patients with cancer. Here, we review immune-related functions of core metabolic pathways, key metabolites, and crucial nutrient transporters in the TME, discuss their metabolic, signaling, and epigenetic impact on tumor immunity and immunotherapy, and explore how these insights can be applied to the development of more effective modalities to potentiate the function of T cells and sensitize tumor cell receptivity to immune attack, thereby overcoming therapeutic resistance.
    Keywords:  T cell; checkpoint; immunotherapy; metabolism; metabolite; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.cmet.2023.06.003
  3. Transplantation. 2023 Jun 30.
      Aging affects immunity broadly through changes caused by immunosenescence, clinically resulting in augmented susceptibility to infections, autoimmunity, and cancer. The most striking alterations associated with immunosenescence have been observed in the T-cell compartment with a significant shift toward a terminally differentiated memory phenotype taking on features of innate immune cells. At the same time, cellular senescence impairs T-cell activation, proliferation, and effector functions, compromising the effectiveness of immunity. In clinical transplantation, T-cell immunosenescence has been the main driver of less frequent acute rejections in older transplant recipients. This patient population, at the same time, suffers more frequently from the side effects of immunosuppressive therapy including higher rates of infections, malignancies, and chronic allograft failure. T-cell senescence has also been identified as an instigator of age-specific organ dysfunction through a process that has been coined "inflammaging," accelerating organ injury and potentially contributing to the limited lifetime of organ transplants. Here, we provide a summary of the latest evidence on molecular characteristics of T-cell senescence affecting alloimmunity and organ quality while dissecting the consequences of unspecific organ injury and immunosuppression on T-cell senescence. Rather than conceptualizing immunosenescence as a broad and general "weaker" alloimmune response, it appears critical to understand both mechanisms and clinical effects in detail as a basis to refine treatment.
    DOI:  https://doi.org/10.1097/TP.0000000000004715
  4. Geroscience. 2023 Jun 24.
      Aging of the arteries is characterized by increased large artery stiffness and impaired endothelium-dependent dilation. We have previously shown that in old (22-24 month) mice T cells accumulate within aorta and mesentery. We have also shown that pharmacologic and genetic deletion of these T cells ameliorates age-related arterial dysfunction. These data indicate that T cells contribute to arterial aging; however, it is unknown if aged T cells alone can induce arterial dysfunction in otherwise young mice. To produce an aged-like T cell phenotype, mice were thymectomized at three-weeks of age or were left with their thymus intact. At 9 months of age, thymectomized mice exhibited greater proportions of both CD4 + and CD8 + memory T cells compared to controls in the blood. Similar changes were observed in the T cells accumulating in the aorta and mesentery. We also observed greater numbers of proinflammatory cytokine producing T cells in the aorta and mesentery. The phenotypic T cell changes in the blood, aorta and mesentery of thymectomized mice were similar to those observed when we compared young (4-6 month) to old thymus intact mice. Along with these alterations, compared to controls, thymectomized mice exhibited augmented large artery stiffness and greater aortic collagen deposition as well as impaired mesenteric artery endothelium dependent dilation due to blunted nitric oxide bioavailability. These results indicate that early life thymectomy results in arterial dysfunction and suggest that an aged-like T cell phenotype alone is sufficient to induce arterial dysfunction in otherwise young mice.
    Keywords:  Aging; Aorta; Endothelium; Mesentery; T lymphocyte; Thymectomy
    DOI:  https://doi.org/10.1007/s11357-023-00853-y
  5. Immunohorizons. 2023 Jun 01. 7(6): 493-507
      In order to study mechanistic/mammalian target of rapamycin's role in T cell differentiation, we generated mice in which Rheb is selectively deleted in T cells (T-Rheb-/- C57BL/6J background). During these studies, we noted that T-Rheb-/- mice were consistently heavier but had improved glucose tolerance and insulin sensitivity as well as a marked increase in beige fat. Microarray analysis of Rheb-/- T cells revealed a marked increase in expression of kallikrein 1-related peptidase b22 (Klk1b22). Overexpression of KLK1b22 in vitro enhanced insulin receptor signaling, and systemic overexpression of KLK1b22 in C57BL/6J mice also enhances glucose tolerance. Although KLK1B22 expression was markedly elevated in the T-Rheb-/- T cells, we never observed any expression in wild-type T cells. Interestingly, in querying the mouse Immunologic Genome Project, we found that Klk1b22 expression was also increased in wild-type 129S1/SVLMJ and C3HEJ mice. Indeed, both strains of mice demonstrate exceptionally improved glucose tolerance. This prompted us to employ CRISPR-mediated knockout of KLK1b22 in 129S1/SVLMJ mice, which in fact led to reduced glucose tolerance. Overall, our studies reveal (to our knowledge) a novel role for KLK1b22 in regulating systemic metabolism and demonstrate the ability of T cell-derived KLK1b22 to regulate systemic metabolism. Notably, however, further studies have revealed that this is a serendipitous finding unrelated to Rheb.
    DOI:  https://doi.org/10.4049/immunohorizons.2300016
  6. Geroscience. 2023 Jun 30.
      Methionine restriction (MR) extends lifespan in various model organisms, and understanding the molecular effectors of MR could expand the repertoire of tools targeting the aging process. Here, we address to what extent the biochemical pathway responsible for redox metabolism of methionine plays in regulating the effects of MR on lifespan and health span. Aerobic organisms have evolved methionine sulfoxide reductases to counter the oxidation of the thioether group contained in the essential amino acid methionine. Of these enzymes, methionine sulfoxide reductase A (MsrA) is ubiquitously expressed in mammalian tissues and has subcellular localization in both the cytosol and mitochondria. Loss of MsrA increases sensitivity to oxidative stress and has been associated with increased susceptibility to age-associated pathologies including metabolic dysfunction. We rationalized that limiting the available methionine with MR may place increased importance on methionine redox pathways, and that MsrA may be required to maintain available methionine for its critical uses in cellular homeostasis including protein synthesis, metabolism, and methylation. Using a genetic mutant mouse lacking MsrA, we tested the requirement for this enzyme in the effects of MR on longevity and markers of healthy aging late in life. When initiated in adulthood, we found that MR had minimal effects in males and females regardless of MsrA status. MR had minimal effect on lifespan with the exception of wild-type males where loss of MsrA slightly increased lifespan on MR. We also observed that MR drove an increase in body weight in wild-type mice only, but mice lacking MsrA tended to maintain more stable body weight throughout their lives. We also found that MR had greater benefit to males than females in terms of glucose metabolism and some functional health span assessments, but MsrA generally had minimal impact on these metrics. Frailty was also found to be unaffected by MR or MsrA in aged animals. We found that in general, MsrA was not required for the beneficial effects of MR on longevity and health span.
    Keywords:  Frailty; Glucose metabolism; Health span; Lifespan; Methionine restriction (MetR); Methionine sulfoxide reductase A (MsrA)
    DOI:  https://doi.org/10.1007/s11357-023-00857-8
  7. Sci Signal. 2023 06 27. 16(791): eabo4094
      The inhibitor of κB kinase (IKK) complex regulates the activation of the nuclear factor κB (NF-κB) family of transcription factors. In addition, IKK represses extrinsic cell death pathways dependent on receptor-interacting serine/threonine-protein kinase 1 (RIPK1) by directly phosphorylating this kinase. Here, we showed that peripheral naïve T cells in mice required the continued expression of IKK1 and IKK2 for their survival; however, the loss of these cells was only partially prevented when extrinsic cell death pathways were blocked by either deleting Casp8 (which encodes the apoptosis-inducing caspase 8) or inhibiting the kinase activity of RIPK1. Inducible deletion of Rela (which encodes the NF-κB p65 subunit) in mature CD4+ T cells also resulted in loss of naïve CD4+ T cells and in reduced abundance of the interleukin-7 receptor (IL-7R) encoded by the NF-κB target Il7r, revealing an additional reliance upon NF-κB for the long-term survival of mature T cells. Together, these data indicate that the IKK-dependent survival of naïve CD4+ T cells depends on both repression of extrinsic cell death pathways and activation of an NF-κB-dependent survival program.
    DOI:  https://doi.org/10.1126/scisignal.abo4094
  8. Front Immunol. 2023 ;14 1182016
      Introduction: Despite recent advances in immunotherapy for hepatocellular carcinoma (HCC), the overall modest response rate underscores the need for a better understanding of the tumor microenvironment (TME) of HCC. We have previously shown that CD38 is widely expressed on tumor-infiltrating leukocytes (TILs), predominantly on CD3+ T cells and monocytes. However, its specific role in the HCC TME remains unclear.Methods: In this current study, we used cytometry time-of-flight (CyTOF), bulk RNA sequencing on sorted T cells, and single-cell RNA (scRNA) sequencing to interrogate expression of CD38 and its correlation with T cell exhaustion in HCC samples. We also employed multiplex immunohistochemistry (mIHC) for validating our findings.
    Results: From CyTOF analysis, we compared the immune composition of CD38-expressing leukocytes in TILs, non-tumor tissue-infiltrating leukocytes (NIL), and peripheral blood mononuclear cells (PBMC). We identified CD8+ T cells as the dominant CD38-expressing TILs and found that CD38 expression was significantly higher in CD8+ TRM in TILs than in NILs. Furthermore, through transcriptomic analysis on sorted CD8+ TRM from HCC tumors, we observed a higher expression of CD38 along with T cell exhaustion genes, including PDCD1 and CTLA4, compared to the circulating memory CD8 T cells from PBMC. This was validated by scRNA sequencing that revealed co-expression of CD38 with PDCD1, CTLA4, and ITGAE (CD103) in T cells from HCC tumors. The protein co-expression of CD38 and PD-1 on CD8+ T cells was further demonstrated by mIHC on HCC FFPE tissues, marking CD38 as a T cell co-exhaustion marker in HCC. Lastly, the higher proportions of CD38+PD-1+ CD8+ T cells and CD38+PD-1+ TRM were significantly associated with the higher histopathological grades of HCC, indicating its role in the aggressiveness of the disease.
    Conclusion: Taken together, the concurrent expression of CD38 with exhaustion markers on CD8+ TRM underpins its role as a key marker of T cell exhaustion and a potential therapeutic target for restoring cytotoxic T cell function in HCC.
    Keywords:  CD38; HCC; PD-1; T cell exhaustion; immune checkpoint; immunotherapy; tissue resident T cells
    DOI:  https://doi.org/10.3389/fimmu.2023.1182016
  9. Cell Immunol. 2023 Jun 20. pii: S0008-8749(23)00080-1. [Epub ahead of print]390 104741
      Although clinically effective, the actions of IFNα, either produced endogenously or by therapeutic delivery, remain poorly understood. Emblematic of this research gap is the disparate array of notable side effects that occur in susceptible individuals, such as neuropsychiatric consequences, autoimmune phenomena, and infectious complications. We hypothesised that these complications are driven at least in part by dysregulated cellular metabolism. Male Wistar rats were treated with either 170,000 IU/kg human recombinant IFNα-2a or BSA/saline (0.9% NaCl) three times per week for three weeks. Bone marrow (BM) immune cells were isolated from the excised femurs for glycolytic rate and mitochondrial function assessment using Agilent Seahorse Technology. Frequencies of immune cell populations were assessed by flow cytometry to determine whether leukopoietic changes had occurred in both blood and BM. Plasma levels of lactate and succinate were also determined. BMDMs were metabolically assessed as above, as well as their metabolic response to an antigenic stimulus (iH37Rv). We observed that BM immune cells from IFN-treated rats exhibit a hypermetabolic state (increased basal OCR/GlycoPER) with decreased mitochondrial metabolic respiration and increased non-mitochondrial OCR. Flow cytometry results indicated an increase in immature granulocytes (RP1- SSChi CD45lo) only in the blood, together with increased succinate levels in the plasma. BMDMs from IFN-treated rats retained the hypermetabolic phenotype after differentiation and failed to induce a step-up in glycolysis and mitochondrial respiration after bacterial stimulation. This work provides the first evidence of the effects of IFNα treatment in inducing hypermetabolic immune features that are associated with markers of inflammation, leukopoiesis, and defective responses to bacterial stimulation.
    Keywords:  Glycolysis; Interferon alpha; Interferon therapy; Macrophages; Metabolism; Mitochondria; Oxidative phosphorylation
    DOI:  https://doi.org/10.1016/j.cellimm.2023.104741
  10. Cancer Discov. 2023 Jun 28. pii: CD-22-0869. [Epub ahead of print]
      Sex differences in glioblastoma (GBM) incidence and outcome are well recognized, and emerging evidence suggests that these extend to genetic/epigenetic and cellular differences, including immune responses. However, the mechanisms driving immunological sex differences are not fully understood. Here, we demonstrate T cells play a critical role in driving GBM sex differences. Male mice exhibited accelerated tumor growth, with decreased frequency and increased exhaustion of CD8+ T cells in tumor. Furthermore, a higher frequency of progenitor exhausted T cells was found in males, with improved responsiveness to anti-PD1 treatment. Moreover, increased T cell exhaustion was observed in male GBM patients. Bone marrow chimera and adoptive transfer models indicated that T cell-mediated tumor control was predominantly regulated in a cell-intrinsic manner, partially mediated by X chromosome inactivation escape gene Kdm6a. These findings demonstrate sex-biased pre-determined behavior of T cells is critical for inducing sex differences in GBM progression and immunotherapy response.
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-0869
  11. Nat Aging. 2023 Jun 29.
      With recent rapid progress in research on aging, there is increasing evidence that many features commonly considered to be mechanisms or drivers of aging in fact represent adaptations. Here, we examine several such features, including cellular senescence, epigenetic aging and stem cell alterations. We draw a distinction between the causes and consequences of aging and define short-term consequences as 'responses' and long-term ones as 'adaptations'. We also discuss 'damaging adaptations', which despite having beneficial effects in the short term, lead to exacerbation of the initial insult and acceleration of aging. Features commonly recognized as 'basic mechanisms of the aging process' are critically examined for the possibility of their adaptation-driven emergence from processes such as cell competition and the wound-like features of the aging body. Finally, we speculate on the meaning of these interactions for the aging process and their relevance for the development of antiaging interventions.
    DOI:  https://doi.org/10.1038/s43587-023-00447-5
  12. Science. 2023 Jun 30. 380(6652): 1372-1380
      Adenosine monophosphate-activated protein kinase (AMPK) activity is stimulated to promote metabolic adaptation upon energy stress. However, sustained metabolic stress may cause cell death. The mechanisms by which AMPK dictates cell death are not fully understood. We report that metabolic stress promoted receptor-interacting protein kinase 1 (RIPK1) activation mediated by TRAIL receptors, whereas AMPK inhibited RIPK1 by phosphorylation at Ser415 to suppress energy stress-induced cell death. Inhibiting pS415-RIPK1 by Ampk deficiency or RIPK1 S415A mutation promoted RIPK1 activation. Furthermore, genetic inactivation of RIPK1 protected against ischemic injury in myeloid Ampkα1-deficient mice. Our studies reveal that AMPK phosphorylation of RIPK1 represents a crucial metabolic checkpoint, which dictates cell fate response to metabolic stress, and highlight a previously unappreciated role for the AMPK-RIPK1 axis in integrating metabolism, cell death, and inflammation.
    DOI:  https://doi.org/10.1126/science.abn1725