bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2022–12–11
fiveteen papers selected by
Pierpaolo Ginefra, Ludwig Institute for Cancer Research



  1. Cell Metab. 2022 Nov 29. pii: S1550-4131(22)00496-X. [Epub ahead of print]
      Aging results in remodeling of T cell immunity and is associated with poor clinical outcomes in age-related diseases such as cancer. Among the hallmarks of aging, changes in host and cellular metabolism critically affect the development, maintenance, and function of T cells. Although metabolic perturbations impact anti-tumor T cell responses, the link between age-associated metabolic dysfunction and anti-tumor immunity remains unclear. In this review, we summarize recent advances in our understanding of aged T cell metabolism, with a focus on the bioenergetic and immunologic features of T cell subsets unique to the aging process. We also survey insights into mechanisms of metabolic T cell dysfunction in aging and discuss the impacts of aging on the efficacy of cancer immunotherapy. As the average life expectancy continues to increase, understanding the interplay between age-related metabolic reprogramming and maladaptive T cell immunity will be instrumental for the development of therapeutic strategies for older patients.
    Keywords:  T cells; aging; cancer; immunity; immunotherapy; metabolism; mitochondria
    DOI:  https://doi.org/10.1016/j.cmet.2022.11.005
  2. Eur J Immunol. 2022 Nov 22.
      Memory CD8+ T cells are indispensable for maintaining long-term immunity against intracellular pathogens and tumors. Despite their presence at oxygen-deprived infected tissue sites or in tumors, the impact of local oxygen pressure on memory CD8+ T cells remains largely unclear. We sought to elucidate how oxygen pressure impacts memory CD8+ T cells arising after infection with Listeria monocytogenes-OVA. Our data revealed that reduced oxygen pressure during in vitro culture switched CD8+ T cell metabolism from oxidative phosphorylation to a glycolytic phenotype. Quantitative proteomic analysis showed that limiting oxygen conditions increased the expression of glucose transporters and components of the glycolytic pathway, while decreasing TCA cycle and mitochondrial respiratory chain proteins. The altered CD8+ T cell metabolism did not affect the expansion potential, but enhanced the granzyme B and IFN-γ production capacity. In vivo, memory CD8+ T cells cultured under low oxygen pressure provided protection against bacterial rechallenge. Taken together, our study indicates that strategies of cellular immune therapy may benefit from reducing oxygen during culture to develop memory CD8+ T cells with superior effector functions.
    Keywords:  CD8+ memory T cells; Cytotoxic T cells; Hypoxic T cell cultures; T cell metabolism; glycolysis
    DOI:  https://doi.org/10.1002/eji.202249918
  3. J Immunol. 2022 Dec 15. 209(12): 2287-2291
      The mechanistic target of rapamycin is an essential regulator of T cell metabolism and differentiation. In this study, we demonstrate that serum- and glucocorticoid-regulated kinase 1 (SGK1), a downstream node of mechanistic target of rapamycin complex 2 signaling, represses memory CD8+ T cell differentiation. During acute infections, murine SGK1-deficient CD8+ T cells adopt an early memory precursor phenotype leading to more long-lived memory T cells. Thus, SGK1-deficient CD8+ T cells demonstrate an enhanced recall capacity in response to reinfection and can readily reject tumors. Mechanistically, activation of SGK1-deficient CD8+ T cells results in decreased Foxo1 phosphorylation and increased nuclear translocation of Foxo1 to promote early memory development. Overall, SGK1 might prove to be a powerful target for enhancing the efficacy of vaccines and tumor immunotherapy.
    DOI:  https://doi.org/10.4049/jimmunol.2100669
  4. J Immunol. 2022 Dec 15. 209(12): 2269-2278
      T cells are essential for mounting defense against various pathogens and malignantly transformed cells. Thymic development and peripheral T cell differentiation are highly orchestrated biological processes that require precise gene regulation. Higher-order genome organization on multiple scales, in the form of chromatin loops, topologically associating domains and compartments, provides pivotal control of T cell gene expression. CTCF and the cohesin machinery are ubiquitously expressed architectural proteins responsible for establishing chromatin structures. Recent studies indicate that transcription factors, such as T lineage-defining Tcf1 and TCR-induced Batf, may have intrinsic ability and/or engage CTCF to shape chromatin architecture. In this article, we summarize current knowledge on the dynamic changes in genome topology that underlie normal or leukemic T cell development, CD4+ helper T cell differentiation, and CD8+ cytotoxic T cell functions. The knowledge lays a solid foundation for elucidating the causative link of spatial chromatin configuration to transcriptional and functional output in T cells.
    DOI:  https://doi.org/10.4049/jimmunol.2200625
  5. Clin Immunol. 2022 Dec 02. pii: S1521-6616(22)00283-2. [Epub ahead of print] 109202
      Senescent T cells are terminally differentiated, proliferative, and disabled lymphocytes that lack an antigen-specific response. The development of T-cell senescence in autoimmune diseases contributes to immunological disorders and disease progression. Senescent T cells lack costimulatory markers and reduce the T cell receptor (TCR) repertoire and the uptake of natural killer cell receptors. Senescent T cells exert cytotoxic effects through the expression of perforin, granzymes, tumor necrosis factor (TNF), and other cytokines without the antigen-presenting process. DNA accumulation, telomere damage, and limited DNA repair capacity are important features of senescent T cells. Impaired mitochondrial function and accumulation of reactive oxygen species (ROS) are also observed. Alleviation of T cell senescence could provide potential targets for the treatment of autoimmune diseases.
    Keywords:  Autoimmune diseases; Cytotoxicity; Dysfunction; Inflammatory; T cell senescence
    DOI:  https://doi.org/10.1016/j.clim.2022.109202
  6. Nat Cell Biol. 2022 Dec;24(12): 1754-1765
      Immune checkpoint blockade (ICB)-based immunotherapy depends on functional tumour-infiltrating lymphocytes (TILs), but essential cytokines are less understood. Here we uncover an essential role of endogenous IL-2 for ICB responsiveness and the correlation between insufficient IL-2 signalling and T-cell exhaustion as tumours progress. To determine if exogenous IL-2 in the tumour microenvironment can overcome ICB resistance, we engineered mesenchymal stem cells (MSCs) to successfully deliver IL-2 mutein dimer (SIL2-EMSC) to TILs. While MSCs have been used to suppress inflammation, SIL2-EMSCs elicit anti-tumour immunity and overcome ICB resistance without toxicity. Mechanistically, SIL2-EMSCs activate and expand pre-existing CD8+ TILs, sufficient for tumour control and induction of systemic anti-tumour effects. Furthermore, engineered MSCs create synergy of innate and adaptive immunity. The therapeutic benefits of SIL2-EMSCs were also observed in humanized mouse models. Overall, engineered MSCs rejuvenate CD8+ TILs and thus potentiate ICB and chemotherapy.
    DOI:  https://doi.org/10.1038/s41556-022-01024-5
  7. Cancer Discov. 2022 Dec 09. OF1
      Tumoral high-endothelial venule (TU-HEV) formation after antiangiogenic immunotherapy generates niches for progenitor T-cell expansion and differentiation into effector T cells.
    DOI:  https://doi.org/10.1158/2159-8290.CD-RW2022-216
  8. Semin Immunol. 2022 Dec 01. pii: S1044-5323(22)00120-8. [Epub ahead of print]65 101702
      There is a long-standing assumption that naive CD4+ and CD8+ T cells are largely homogeneous populations despite the extraordinary diversity of their T cell receptors (TCR). The self-immunopeptidome plays a key role in the selection of the naive T cell repertoire in the thymus, and self-peptides are also an important driver of differences between individual naive T cells with regard to their subsequent functional contributions to an immune response. Accumulating evidence suggests that as early as the β-selection stage of T cell development, when only one of the recombined chains of the mature TCR is expressed, signaling thresholds may be established for positive selection of immature thymocytes. Stochastic encounters subsequently made with self-ligands during positive selection in the thymus imprint functional biases that a T cell will carry with it throughout its lifetime, although ongoing interactions with self in the periphery ensure a level of plasticity in the gene expression wiring of naive T cells. Identifying the sources of heterogeneity in the naive T cell population and which functional attributes of T cells can be modulated through post-thymic interventions versus those that are fixed during T cell development, could enable us to better select or generate T cells with particular traits to improve the efficacy of T cell therapies.
    Keywords:  Heterogeneity; Immunopeptidome; Self-peptides; Self-reactivity; T cell; Thymic selection; Thymocyte; Tonic signaling
    DOI:  https://doi.org/10.1016/j.smim.2022.101702
  9. Nat Immunol. 2022 Dec 05.
      Amino acid metabolism is essential for cell survival, while the byproduct ammonia is toxic and can injure cellular longevity. Here we show that CD8+ memory T (TM) cells mobilize the carbamoyl phosphate (CP) metabolic pathway to clear ammonia, thus promoting memory development. CD8+ TM cells use β-hydroxybutyrylation to upregulate CP synthetase 1 and trigger the CP metabolic cascade to form arginine in the cytosol. This cytosolic arginine is then translocated into the mitochondria where it is split by arginase 2 to urea and ornithine. Cytosolic arginine is also converted to nitric oxide and citrulline by nitric oxide synthases. Thus, both the urea and citrulline cycles are employed by CD8+ T cells to clear ammonia and enable memory development. This ammonia clearance machinery might be targeted to improve T cell-based cancer immunotherapies.
    DOI:  https://doi.org/10.1038/s41590-022-01365-1
  10. Front Oncol. 2022 ;12 1042196
      MicroRNAs (miRNAs) are emerging as a significant modulator of immunity, and their abnormal expression/activity has been linked to numerous human disorders, such as cancer. It is now known that miRNAs potentially modulate the production of several metabolic processes in tumor-associated immune cells and indirectly via different metabolic enzymes that affect tumor-associated signaling cascades. For instance, Let-7 has been identified as a crucial modulator for the long-lasting survival of CD8+ T cells (naive phenotypes) in cancer by altering their metabolism. Furthermore, in T cells, it has been found that enhancer of zeste homolog 2 (EZH2) expression is controlled via glycolytic metabolism through miRNAs in patients with ovarian cancer. On the other hand, immunometabolism has shown us that cellular metabolic reactions and processes not only generate ATP and biosynthetic intermediates but also modulate the immune system and inflammatory processes. Based on recent studies, new and encouraging approaches to cancer involving the modification of miRNAs in immune cell metabolism are currently being investigated, providing insight into promising targets for therapeutic strategies based on the pivotal role of immunometabolism in cancer. Throughout this overview, we explore and describe the significance of miRNAs in cancer and immune cell metabolism.
    Keywords:  MicroRNAs; cancer; immune cell; immunometabolism; metabolism
    DOI:  https://doi.org/10.3389/fonc.2022.1042196
  11. Nat Commun. 2022 Dec 08. 13(1): 7576
      Mortality in children with severe malnutrition is strongly related to signs of metabolic dysfunction, such as hypoglycemia. Lower circulating tryptophan levels in children with severe malnutrition suggest a possible disturbance in the tryptophan-nicotinamide adenine dinucleotide (TRP-NAD+) pathway and subsequently in NAD+  dependent metabolism regulator sirtuin1 (SIRT1). Here we show that severe malnutrition in weanling mice, induced by 2-weeks of low protein diet feeding from weaning, leads to an impaired TRP-NAD+  pathway with decreased NAD+ levels and affects hepatic mitochondrial turnover and function. We demonstrate that stimulating the TRP-NAD+  pathway with NAD+  precursors improves hepatic mitochondrial and overall metabolic function through SIRT1 modulation. Activating SIRT1 is sufficient to induce improvement in metabolic functions. Our findings indicate that modulating the TRP-NAD+  pathway can improve liver metabolic function in a mouse model of severe malnutrition. These results could lead to the development of new interventions for children with severe malnutrition.
    DOI:  https://doi.org/10.1038/s41467-022-35317-y
  12. Front Immunol. 2022 ;13 1028366
      T cells rapidly transition from a quiescent state into active proliferation and effector function upon exposure to cognate antigen. These processes are tightly controlled by signal transduction pathways that influence changes in chromatin remodeling, gene transcription, and metabolism, all of which collectively drive specific T cell memory or effector cell development. Dysregulation of any of these events can mediate disease and the past several years has shown unprecedented novel approaches to understand these events, down to the single-cell level. The massive explosion of sequencing approaches to assess the genome and transcriptome at the single cell level has transformed our understanding of T cell activation, developmental potential, and effector function under normal and various disease states. Despite these advances, there remains a significant dearth of information regarding how these events are translated to the protein level. For example, resolution of protein isoforms and/or specific post-translational modifications mediating T cell function remains obscure. The application of proteomics can change that, enabling significant insights into molecular mechanisms that regulate T cell function. However, unlike genomic approaches that have enabled exquisite visualization of T cell dynamics at the mRNA and chromatin level, proteomic approaches, including those at the single-cell level, has significantly lagged. In this review, we describe recent studies that have enabled a better understanding of how protein synthesis and degradation change during T cell activation and acquisition of effector function. We also highlight technical advances and how these could be applied to T cell biology. Finally, we discuss future needs to expand upon our current knowledge of T cell proteomes and disease.
    Keywords:  T cells; adaptive immunity; mass spectrometry; protein identification; proteomics
    DOI:  https://doi.org/10.3389/fimmu.2022.1028366
  13. J Transl Autoimmun. 2022 ;5 100173
       Objectives: We sought to develop medium throughput standard operating procedures for screening cryopreserved human peripheral blood mononuclear cells (PBMCs) for CD4+ and CD8+ T cell responses to potential autoantigens.
    Methods: Dendritic cells were loaded with a peptide cocktail from ubiquitous viruses or full-length viral protein antigens and cocultured with autologous T cells. We measured expression of surface activation markers on T cells by flow cytometry and cytometry by time of flight 24-72 h later. We tested responses among T cells freshly isolated from healthy control PBMCs, cryopreserved T cells, and T cells derived from a variety of T cell expansion protocols. We also compared the transcriptional profile of CD8+ T cells rested with interleukin (IL)7 for 48 h after 1) initial thawing, 2) expansion, and 3) secondary cryopreservation/thawing of expanded cells. To generate competent antigen presenting cells from PBMCs, we promoted differentiation of PBMCs into dendritic cells with granulocyte macrophage colony stimulating factor and IL-4.
    Results: We observed robust dendritic cell differentiation from human PBMCs treated with 50 ng/mL GM-CSF and 20 ng/mL IL-4 in as little as 3 days. Dendritic cell purity was substantially increased by magnetically enriching for CD14+ monocytes prior to differentiation. We also measured antigen-dependent T cell activation in DC-T cell cocultures. However, polyclonal expansion of T cells with anti-CD3/antiCD28 abolished antigen-dependent upregulation of CD69 in our assay despite minimal transcriptional differences between rested CD8+ T cells before and after expansion. Furthermore, resting these expanded T cells in IL-2, IL-7 or IL-15 did not restore the antigen dependent responses. In contrast, T cells that were initially expanded with IL-2 + IL-7 rather than plate bound anti-CD3 + anti-CD28 retained responsiveness to antigen stimulation and these responses strongly correlated with responses measured at initial thawing.
    Significance: While screening techniques for potential pathological autoantibodies have come a long way, comparable full-length protein target assays for screening patient T cells at medium throughput are noticeably lacking due to technical hurdles. Here we advance techniques that should have broad applicability to translational studies investigating cell mediated immunity in infectious or autoimmune diseases. Future studies are aimed at investigating possible CD8+ T cell autoantigens in MS and other CNS autoimmune diseases.
    Keywords:  Antigen stimulation; Dendritic cells; Monocytes; Polyclonal expansion; T cell
    DOI:  https://doi.org/10.1016/j.jtauto.2022.100173