bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2022‒09‒04
thirteen papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Front Oncol. 2022 ;12 969563
      The methionine cycle comprises a series of reactions that catabolizes and regenerates methionine. This process is crucial to many cellular functions, including polyamine synthesis, DNA synthesis, redox balance, and DNA and histone methylation. In response to antigens, T cells activate the methionine cycle to support proliferation and differentiation, indicating the importance of the methionine cycle to T cell immunity. In cancer, T cells serve as important effectors of adaptive immunity by directly killing cancerous cells. However, the tumor microenvironment can induce a state of T cell exhaustion by regulating the methionine metabolism of T cells, posing a barrier to both endogenous T cell responses and T cell immunotherapy. Here we review the role of methionine cycle metabolites in regulating the activation and effector function of T cells and explore the mechanism by which tumor cells exploit the methionine pathway as a means of immune evasion. Finally, we discuss new perspectives on reprogramming the methionine cycle of T cells to enhance anti-tumor immunotherapy.
    Keywords:  T cells; cancer; cancer immunotherapy; immunemetabolism; metabolism; the methionine cycle
    DOI:  https://doi.org/10.3389/fonc.2022.969563
  2. Nat Commun. 2022 Sep 01. 13(1): 5128
      The decline of CD8+ T cell functions contributes to deteriorating health with aging, but the mechanisms that underlie this phenomenon are not well understood. We use single-cell RNA sequencing with both cross-sectional and longitudinal samples to assess how human CD8+ T cell heterogeneity and transcriptomes change over nine decades of life. Eleven subpopulations of CD8+ T cells and their dynamic changes with age are identified. Age-related changes in gene expression result from changes in the percentage of cells expressing a given transcript, quantitative changes in the transcript level, or a combination of these two. We develop a machine learning model capable of predicting the age of individual cells based on their transcriptomic features, which are closely associated with their differentiation and mutation burden. Finally, we validate this model in two separate contexts of CD8+ T cell aging: HIV infection and CAR T cell expansion in vivo.
    DOI:  https://doi.org/10.1038/s41467-022-32869-x
  3. Immunology. 2022 Aug 04.
      Age-associated changes in T-cell function play a central role in immunosenescence. The role of aging in the decreased T-cell repertoire, primarily because of thymic involution, has been extensively studied. However, increasing evidence indicates that aging also modulates the mechanical properties of cells and the internal ordering of diverse cell components. Cellular functions are generally dictated by the biophysical phenotype of cells, which itself is also tightly regulated at the molecular level. Based on previous evidence suggesting that the relative nuclear size contributes to variations of T-cell stiffness, here we examined whether age-associated changes in T-cell migration are dictated by biophysical parameters, in part through nuclear cytoskeleton organization and cell deformability. In this study, we first performed longitudinal analyses of a repertoire of 111 functional, biophysical and biomolecular features of the nucleus and cytoskeleton of mice CD4+ and CD8+ T cells, in both naive and memory state. Focusing on the pairwise correlations, we found that age-related changes in nuclear architecture and internal ordering were correlated with T-cell stiffening and declined interstitial migration. A similarity analysis confirmed that cell-to-cell variation was a direct result of the aging process and we applied regression models to identify biomarkers that can accurately estimate individuals' age. Finally, we propose a biophysical model for a comprehensive understanding of the results: aging involves an evolution of the relative nuclear size, in part through DNA-hypomethylation and nuclear lamin B1, which implies an increased cell stiffness, thus inducing a decline in cell migration.
    Keywords:  CD4 cell; CD8 cell; T cell; aging
    DOI:  https://doi.org/10.1111/imm.13559
  4. Immunology. 2022 Aug 08.
      Immune checkpoint inhibitor (ICI) immunotherapy relies on the restoration of T-cell functions. The ICI receptors are not only found on exhausted T cells but also upregulated upon activation and reach high levels on effector T cells. In an ex vivo model, this study explored the consequences of PD-1 and cytotoxic T-lymphocyte antigen (CTLA-4) blockade applied during specific time frames of T-cell stimulation that coincide with distinct functional phases in type 1 helper T (Th1) cells. When applied at an early stimulation stage, the checkpoint blockade interfered with the upregulation of multiple inhibitory receptors such as PD-1, LAG3, TIM-3 and CTLA-4. Moreover, extension of the blockade period restricted the hyporesponsiveness in T cells. Alternatively, a short-term ICI treatment was advantageous when applied at late time frames of Th1 cell stimulation. Here, a transition phase from effector to exhausted state, which coincided with the late time frames of Th1 stimulation, was clearly determined together with the transcriptomics data demonstrating the initiation of significant alterations in metabolic pathways, genetic information processes, effector and exhaustion specific pathways. Applied in this transition phase, PD-1 and/or CTLA-4 blockade downregulated the inhibitory receptors which were already present on the effector Th1 cells, potentially through endocytic pathways. Therefore, the efficacy of ICI therapy was modulated by the functional status of T cells and can be improved by modifying the timing and duration of PD-1 and CTLA-4 blockade. In conclusion, the ICI therapy not only supports the reactivation of T cells but can also constrain de novo exhaustion.
    Keywords:  Th cells; activation; checkpoint blockade; differentiation; exhaustion
    DOI:  https://doi.org/10.1111/imm.13560
  5. Mol Ther. 2022 Aug 30. pii: S1525-0016(22)00505-6. [Epub ahead of print]
      Regulatory T cells overwhelm conventional T cells in the tumor microenvironment (TME) thanks to a FOXP3-driven metabolic program that allows them to engage different metabolic pathways. Using a melanoma model of adoptive T-cell therapy (ACT), we show that FOXP3 overexpression in mature CD8 T cells improved their antitumor efficacy, favoring their tumor recruitment, proliferation and cytotoxicity. FOXP3-overexpressing (Foxp3UP) CD8 T cells exhibited features of tissue-resident memory-like and effector T cells, but not suppressor activity. Transcriptomic analysis of tumor-infiltrating Foxp3UP CD8 T cells showed positive enrichment in a wide variety of metabolic pathways, such as glycolysis, fatty acid (FA) metabolism and oxidative phosphorylation (OXPHOS). Intratumoral Foxp3UP CD8 T cells exhibited an enhanced capacity for glucose and FA uptake, as well as accumulation of intracellular lipids. Interestingly, Foxp3UP CD8 T cells compensated for the loss of mitochondrial respiration-driven ATP production by activating aerobic glycolysis. Moreover, in limiting nutrient conditions these cells engaged FA oxidation to drive OXPHOS for their energy demands. Importantly, their ability to couple glycolysis and OXPHOS allowed them to sustain proliferation under glucose restriction. Our findings demonstrate a hitherto unknown role for FOXP3 in the adaptation of CD8 T cells to TME that may enhance their efficacy in ACT.
    Keywords:  CD8 T cell response; FOXP3; T cell metabolism; T cell-based cancer immunotherapy
    DOI:  https://doi.org/10.1016/j.ymthe.2022.08.017
  6. Nat Commun. 2022 Sep 02. 13(1): 5184
      Cellular metabolism underpins immune cell functionality, yet our understanding of metabolic influences in human dendritic cell biology and their ability to orchestrate immune responses is poorly developed. Here, we map single-cell metabolic states and immune profiles of inflammatory and tolerogenic monocytic dendritic cells using recently developed multiparametric approaches. Single-cell metabolic pathway activation scores reveal simultaneous engagement of multiple metabolic pathways in distinct monocytic dendritic cell differentiation stages. GM-CSF/IL4-induce rapid reprogramming of glycolytic monocytes and transient co-activation of mitochondrial pathways followed by TLR4-dependent maturation of dendritic cells. Skewing of the mTOR:AMPK phosphorylation balance and upregulation of OXPHOS, glycolytic and fatty acid oxidation metabolism underpin metabolic hyperactivity and an immunosuppressive phenotype of tolerogenic dendritic cells, which exhibit maturation-resistance and a de-differentiated immune phenotype marked by unique immunoregulatory receptor signatures. This single-cell dataset provides important insights into metabolic pathways impacting the immune profiles of human dendritic cells.
    DOI:  https://doi.org/10.1038/s41467-022-32849-1
  7. Clin Transl Immunology. 2022 ;11(8): e1414
      This commentary article highlights two recently published studies, which for the first time revealed the immunological underpinnings of sex-bias in cancer incidence and mortality. These studies showed that the androgen receptor restrains anti-tumour immunity in males by repressing cytotoxic genes in CD8+ T cells.
    DOI:  https://doi.org/10.1002/cti2.1414
  8. Curr Osteoporos Rep. 2022 Aug 31.
      PURPOSE OF REVIEW: Aging leads to decline in bone mass and quality starting at age 30 in humans. All mammals undergo a basal age-dependent decline in bone mass. Osteoporosis is characterized by low bone mass and changes in bone microarchitecture that increases the risk of fracture. About a third of men over the age of 50 years are osteoporotic because they have higher than basal bone loss. In women, there is an additional acute decrement in bone mass, atop the basal rate, associated with loss of ovarian function (menopause) causing osteoporosis in about half of the women. Both genetics and environmental factors such as smoking, chronic infections, diet, microbiome, and metabolic disease can modulate basal age-dependent bone loss and eventual osteoporosis. Here, we review recent studies on the etiology of age-dependent decline in bone mass and propose a mechanism that integrates both genetic and environmental factors.RECENT FINDINGS: Recent findings support that aging and menopause dysregulate the immune system leading to sterile low-grade inflammation. Both animal models and human studies demonstrate that certain kinds of inflammation, in both men and women, mediate bone loss. Senolytics, meant to block a wide array of age-induced effects by preventing cellular senescence, have been shown to improve bone mass in aged mice. Based on a synthesis of the recent data, we propose that aging activates long-lived tissue resident memory T-cells to become senescent and proinflammatory, leading to bone loss. Targeting this population may represent a promising osteoporosis therapy. Emerging data indicates that there are several mechanisms that lead to sterile low-grade chronic inflammation, inflammaging, that cause age- and estrogen-loss dependent osteoporosis in men and women.
    Keywords:  .
    DOI:  https://doi.org/10.1007/s11914-022-00745-8
  9. Cytotherapy. 2022 Aug 25. pii: S1465-3249(22)00740-X. [Epub ahead of print]
      BACKGROUND AIMS: Modular automation is a flexible and reliable option to build the foundation of a new or evolving process or to introduce automation to a process that is already established. Herein the authors demonstrate that modular automation provides both high-quality and high-yield T-cell products.METHODS: Cells from three individual donors collected on an automated continuous flow centrifugation system were successfully expanded in a functionally closed, automated, perfusion-based hollow fiber bioreactor. These cells were then prepared for cryopreservation in an automated closed-system device that maintains temperature and aliquots a mixed cell product and cryoprotectant into product bags. Cell product bags were thawed and expanded in flasks. Samples taken throughout this manufacturing process were analyzed for cell phenotype, exhaustion markers and functionality. The proportion of CD4+ and CD8+ T cells was maintained through each step, from pre-expansion and post-expansion to immediately after thaw and 24 h after thaw.
    RESULTS: Interestingly, phenotypic markers such as CD45RO, CD45RA and CCR7 evolved throughout the process and stem-like memory T cells emerged as the predominant phenotype in the clinically relevant 24-h post-thaw sample.
    CONCLUSIONS: Modular automation supported the generation of stem-like memory T cells that were not terminally exhausted and were able to produce effector cytokines upon restimulation.
    Keywords:  Cell expansion; Cell therapy manufacturing; Cryopreservation; Fill and finish; Modular automation; Stem-like memory T cells
    DOI:  https://doi.org/10.1016/j.jcyt.2022.07.009
  10. Aging (Albany NY). 2022 Aug 29. 14(undefined):
      Genomic instability, telomere attrition, epigenetic alterations, mitochondrial dysfunction, loss of proteostasis, deregulated nutrient-sensing, cellular senescence, stem cell exhaustion, and altered intercellular communication were the original nine hallmarks of ageing proposed by López-Otín and colleagues in 2013. The proposal of these hallmarks of ageing has been instrumental in guiding and pushing forward research on the biology of ageing. In the nearly past 10 years, our in-depth exploration on ageing research has enabled us to formulate new hallmarks of ageing which are compromised autophagy, microbiome disturbance, altered mechanical properties, splicing dysregulation, and inflammation, among other emerging ones. Amalgamation of the 'old' and 'new' hallmarks of ageing may provide a more comprehensive explanation of ageing and age-related diseases, shedding light on interventional and therapeutic studies to achieve healthy, happy, and productive lives in the elderly.
    Keywords:  autophagy; hallmarks of ageing; healthspan; longevity; neurodegeneration
    DOI:  https://doi.org/10.18632/aging.204248
  11. Sci Adv. 2022 Sep 02. 8(35): eabn9550
      In mice and humans with cancer, intravenous 13C-glucose infusion results in 13C labeling of tumor tricarboxylic acid (TCA) cycle intermediates, indicating that pyruvate oxidation in the TCA cycle occurs in tumors. The TCA cycle is usually coupled to the electron transport chain (ETC) because NADH generated by the cycle is reoxidized to NAD+ by the ETC. However, 13C labeling does not directly report ETC activity, and other pathways can oxidize NADH, so the ETC's role in these labeling patterns is unverified. We examined the impact of the ETC complex I inhibitor IACS-010759 on tumor 13C labeling. IACS-010759 suppresses TCA cycle labeling from glucose or lactate and increases labeling from glutamine. Cancer cells expressing yeast NADH dehydrogenase-1, which recycles NADH to NAD+ independently of complex I, display normalized labeling when complex I is inhibited, indicating that cancer cell ETC activity regulates TCA cycle metabolism and 13C labeling from multiple nutrients.
    DOI:  https://doi.org/10.1126/sciadv.abn9550