bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2022‒07‒03
nine papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Nat Cell Biol. 2022 Jun 30.
      CD8+ T cells are central mediators of immune responses against infections and cancer. Here we identified Dapl1 as a crucial regulator of CD8+ T cell responses to cancer and infections. Dapl1 deficiency promotes the expansion of tumour-infiltrating effector memory-like CD8+ T cells and prevents their functional exhaustion, coupled with increased antitumour immunity and improved efficacy of adoptive T cell therapy. Dapl1 controls activation of NFATc2, a transcription factor required for the effector function of CD8+ T cells. Although NFATc2 mediates induction of the immune checkpoint receptor Tim3, competent NFATc2 activation prevents functional exhaustion of CD8+ T cells. Interestingly, exhausted CD8+ T cells display attenuated NFATc2 activation due to Tim3-mediated feedback inhibition; Dapl1 deletion rescues NFATc2 activation and thereby prevents dysfunction of exhausted CD8+ T cells in chronic infection and cancer. These findings establish Dapl1 as a crucial regulator of CD8+ T cell immunity and a potential target for cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41556-022-00942-8
  2. J Clin Invest. 2022 Jul 01. pii: e158447. [Epub ahead of print]132(13):
      Mitochondrial dysfunction and cell senescence are hallmarks of aging and are closely interconnected. Mitochondrial dysfunction, operationally defined as a decreased respiratory capacity per mitochondrion together with a decreased mitochondrial membrane potential, typically accompanied by increased production of oxygen free radicals, is a cause and a consequence of cellular senescence and figures prominently in multiple feedback loops that induce and maintain the senescent phenotype. Here, we summarize pathways that cause mitochondrial dysfunction in senescence and aging and discuss the major consequences of mitochondrial dysfunction and how these consequences contribute to senescence and aging. We also highlight the potential of senescence-associated mitochondrial dysfunction as an antiaging and antisenescence intervention target, proposing the combination of multiple interventions converging onto mitochondrial dysfunction as novel, potent senolytics.
    DOI:  https://doi.org/10.1172/JCI158447
  3. Front Endocrinol (Lausanne). 2022 ;13 914136
      Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells and is becoming a serious public health threat. Despite the increasing incidence rate of T1D worldwide, our understanding of why T1D develops and how T cells lose their self-tolerance in this process remain limited. Recent advances in immunometabolism have shown that cellular metabolism plays a fundamental role in shaping T cell responses. T cell activation and proliferation are supported by metabolic reprogramming to meet the increased energy and biomass demand, and deregulation in immune metabolism can lead to autoimmune disorders. Specific metabolic pathways and factors have been investigated to rectify known deficiencies in several autoimmune diseases, including T1D. Most therapeutic strategies have concentrated on aerobic glycolysis to limit T cell responses, whereas glycolysis is the main metabolic pathway for T cell activation and proliferation. The use of metabolic inhibitors, especially glycolysis inhibitors may largely leave T cell function intact but primarily target those autoreactive T cells with hyperactivated metabolism. In this review, we provide an overview of metabolic reprogramming used by T cells, summarize the recent findings of key metabolic pathways and regulators modulating T cell homeostasis, differentiation, and function in the context of T1D, and discuss the opportunities for metabolic intervention to be employed to suppress autoreactive T cells and limit the progression of β-cell destruction.
    Keywords:  T cell; T cell differentiation and function; T cell metabolism; autoimmunity; type 1 diabetes
    DOI:  https://doi.org/10.3389/fendo.2022.914136
  4. Nat Commun. 2022 Jul 01. 13(1): 3799
      Atherosclerosis is a chronic inflammatory disease driven by hypercholesterolemia. During aging, T cells accumulate cholesterol, potentially affecting inflammation. However, the effect of cholesterol efflux pathways mediated by ATP-binding cassette A1 and G1 (ABCA1/ABCG1) on T cell-dependent age-related inflammation and atherosclerosis remains poorly understood. In this study, we generate mice with T cell-specific Abca1/Abcg1-deficiency on the low-density-lipoprotein-receptor deficient (Ldlr-/-) background. T cell Abca1/Abcg1-deficiency decreases blood, lymph node, and splenic T cells, and increases T cell activation and apoptosis. T cell Abca1/Abcg1-deficiency induces a premature T cell aging phenotype in middle-aged (12-13 months) Ldlr-/- mice, reflected by upregulation of senescence markers. Despite T cell senescence and enhanced T cell activation, T cell Abca1/Abcg1-deficiency decreases atherosclerosis and aortic inflammation in middle-aged Ldlr-/- mice, accompanied by decreased T cells in atherosclerotic plaques. We attribute these effects to T cell apoptosis downstream of T cell activation, compromising T cell functionality. Collectively, we show that T cell cholesterol efflux pathways suppress T cell apoptosis and senescence, and induce atherosclerosis in middle-aged Ldlr-/- mice.
    DOI:  https://doi.org/10.1038/s41467-022-31135-4
  5. Sci Immunol. 2022 Jul;7(73): eabq6783
      Androgen signaling compromises CD8+ T cell effector functions and contributes to sex-biased outcomes in many forms of cancer (see the related Research Article by Kwon et al.).
    DOI:  https://doi.org/10.1126/sciimmunol.abq6783
  6. Exerc Sport Sci Rev. 2022 Jul 01.
      ABSTRACT: We propose the beneficial effects of exercise are in part mediated through the prevention and elimination of senescent cells. Exercise counters multiple forms of age-related molecular damage that initiate the senescence program and activates immune cells responsible for senescent cell clearance. Preclinical and clinical evidence for exercise as a senescence-targeting therapy and areas needing further investigation are discussed.
    DOI:  https://doi.org/10.1249/JES.0000000000000302
  7. Front Oncol. 2022 ;12 874156
      Alcohol consumption in women enhances breast cancer incidence and ethanol is the main causal factor. Compromised host immunity through immunosuppression facilitates the development of many types of cancer, including breast cancer. Immune cells in breast tissues, particularly tumor-infiltrating CD8 cytotoxic T cells, play a critical role in the host anti-tumor immunity against breast tumorigenesis. These cytotoxic T cells are the major immune cells to carry out anti-tumor immunity through their cytotoxic effector function, which can be regulated by immune checkpoint pathways. The PD-1/PD-L1 pathway (the interaction between programmed death-1, PD-1, and its ligand, programmed death-ligand 1, PD-L1) is the best characterized one. However, the effects of ethanol exposure on T cell anti-tumor immunity and how that may contribute to ethanol-enhanced mammary tumorigenicity remain unknown. FVB.Cg-Tg(Wnt1)1Hev/J transgenic mice develop spontaneous mammary tumors starting around the age of 2-3 months and have been a widely-used mouse model for breast cancer research. Using this mouse model, the current study determined the effects of ethanol on the PD-L1/PD-1 pathway and how that may contribute to mammary tumorigenesis. The results indicated that ethanol exposure enhanced mammary tumor formation accompanied with an up-regulation of PD-1/PD-L1 pathway (increased PD-L1 levels in tumor tissue cells and the amount of PD-1-expressing tumor-infiltrating CD8 T cells) and inhibited T cell anti-tumor function, while inhibition of PD-1/PD-L1 restored T cell anti-tumor effector function and mitigated ethanol-enhanced tumorigenesis.
    Keywords:  PD-1; PD-L1; T cell; alcohol; breast cancer; ethanol; immune checkpoint
    DOI:  https://doi.org/10.3389/fonc.2022.874156
  8. Nat Cardiovasc Res. 2022 Mar;1(3): 211-222
      Heart failure with preserved ejection fraction (HFpEF) is increasing in prevalence worldwide, already accounting for at least half of all heart failure (HF). As most patients with HFpEF are obese with metabolic syndrome, metabolic stress has been implicated in syndrome pathogenesis. Recently, compelling evidence for bidirectional crosstalk between metabolic stress and chronic inflammation has emerged, and alterations in systemic and cardiac immune responses are held to participate in HFpEF pathophysiology. Indeed, based on both preclinical and clinical evidence, comorbidity-driven systemic inflammation, coupled with metabolic stress, have been implicated together in HFpEF pathogenesis. As metabolic alterations impact immune function(s) in HFpEF, major changes in immune cell metabolism are also recognized in HFpEF and in HFpEF-predisposing conditions. Both arms of immunity - innate and adaptive - are implicated in the cardiomyocyte response in HFpEF. Indeed, we submit that crosstalk among adipose tissue, the immune system, and the heart represents a critical component of HFpEF pathobiology. Here, we review recent evidence in support of immunometabolic mechanisms as drivers of HFpEF pathogenesis, discuss pivotal biological mechanisms underlying the syndrome, and highlight questions requiring additional inquiry.
    Keywords:  HFpEF; immune system; metabolism
    DOI:  https://doi.org/10.1038/s44161-022-00032-w
  9. Proc Natl Acad Sci U S A. 2022 Jul 05. 119(27): e2121520119
      Activated Foxp3+ regulatory T (Treg) cells differentiate into effector Treg (eTreg) cells to maintain peripheral immune homeostasis and tolerance. T cell receptor (TCR)-mediated induction and regulation of store-operated Ca2+ entry (SOCE) is essential for eTreg cell differentiation and function. However, SOCE regulation in Treg cells remains unclear. Here, we show that inositol polyphosphate multikinase (IPMK), which generates inositol tetrakisphosphate and inositol pentakisphosphate, is a pivotal regulator of Treg cell differentiation downstream of TCR signaling. IPMK is highly expressed in TCR-stimulated Treg cells and promotes a TCR-induced Treg cell program. IPMK-deficient Treg cells display aberrant T cell activation and impaired differentiation into RORγt+ Treg cells and tissue-resident Treg cells. Mechanistically, IPMK controls the generation of higher-order inositol phosphates, thereby promoting Ca2+ mobilization and Treg cell effector functions. Our findings identify IPMK as a critical regulator of TCR-mediated Ca2+ influx and highlight the importance of IPMK in Treg cell-mediated immune homeostasis.
    Keywords:  Ca2+ influx; T cell receptor signaling; inositol phosphate; inositol polyphosphate multikinase; regulatory T cells
    DOI:  https://doi.org/10.1073/pnas.2121520119