bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2021‒07‒25
twenty papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Front Immunol. 2021 ;12 703972
      Mitochondrial dysfunction resulting in oxidative stress could be associated with tissue and cell damage common in many T cell-mediated autoimmune diseases. Autoreactive CD4 T cell effector subsets (Th1,Th17) driving these diseases require increased glycolytic metabolism to upregulate key transcription factors (TF) like T-bet and RORγt that drive differentiation and proinflammatory responses. However, research in immunometabolism has demonstrated that mitochondrial-derived reactive oxygen species (ROS) act as signaling molecules contributing to T cell fate and function. Eliminating autoreactive T cells by targeting glycolysis or ROS production is a potential strategy to inhibit autoreactive T cell activation without compromising systemic immune function. Additionally, increasing self-tolerance by promoting functional immunosuppressive CD4 T regulatory (Treg) cells is another alternative therapeutic for autoimmune disease. Tregs require increased ROS and oxidative phosphorylation (OxPhos) for Foxp3 TF expression, differentiation, and anti-inflammatory IL-10 cytokine synthesis. Decreasing glycolytic activity or increasing glutathione and superoxide dismutase antioxidant activity can also be beneficial in inhibiting cytotoxic CD8 T cell effector responses. Current treatment options for T cell-mediated autoimmune diseases such as Type 1 diabetes (T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), and systemic lupus erythematosus (SLE) include global immunosuppression, antibodies to deplete immune cells, and anti-cytokine therapy. While effective in diminishing autoreactive T cells, they can also compromise other immune responses resulting in increased susceptibility to other diseases and complications. The impact of mitochondrial-derived ROS and immunometabolism reprogramming in autoreactive T cell differentiation could be a potential target for T cell-mediated autoimmune diseases. Exploiting these pathways may delay autoimmune responses in T1D.
    Keywords:  T cell; autoimmunity; immunometabolism; mitochondria; reactive oxygen species
    DOI:  https://doi.org/10.3389/fimmu.2021.703972
  2. J Clin Invest. 2021 Jul 22. pii: 144353. [Epub ahead of print]
      Intratumoral T cells that might otherwise control tumors are often identified in an 'exhausted' state, defined by specific epigenetic modifications and upregulation of genes such as CD38, CTLA-4 and PD-1. While the term might imply inactivity, there has been little study of this state at the phenotypic level in tumors to understand the extent of their incapacitation. Starting with the observation that T cells move more quickly through mouse tumors as residence time increases and they progress towards exhaustion, we elaborated a non-stimulatory live-biopsy method for real-time study of T cell behaviors within individual patient tumors. Using two-photon microscopy, we studied native CD8 T cells interacting with APCs and cancer cells in different micro-niches of human tumors, finding that T cell speed was variable by region and by patient and was inversely correlated with local tumor density. Across a range of tumor types, we found a strong relationship between CD8 T cell motility and exhausted T cell state that corresponds to observations made in mouse models where exhausted T cells move faster. Our study demonstrates T cell dynamic states in individual human tumors and supports the existence of an active program in 'exhausted' T cells that extends beyond incapacitating them.
    Keywords:  Cancer; Immunology; Oncology; T cells
    DOI:  https://doi.org/10.1172/JCI144353
  3. Nat Commun. 2021 07 21. 12(1): 4445
      Immune checkpoint inhibitors demonstrate clinical activity in many tumor types, however, only a fraction of patients benefit. Combining CD137 agonists with these inhibitors increases anti-tumor activity preclinically, but attempts to translate these observations to the clinic have been hampered by systemic toxicity. Here we describe a human CD137xPD-L1 bispecific antibody, MCLA-145, identified through functional screening of agonist- and immune checkpoint inhibitor arm combinations. MCLA-145 potently activates T cells at sub-nanomolar concentrations, even under suppressive conditions, and enhances T cell priming, differentiation and memory recall responses. In vivo, MCLA-145 anti-tumor activity is superior to immune checkpoint inhibitor comparators and linked to recruitment and intra-tumor expansion of CD8 + T cells. No graft-versus-host-disease is observed in contrast to other antibodies inhibiting the PD-1 and PD-L1 pathway. Non-human primates treated with 100 mg/kg/week of MCLA-145 show no adverse effects. The conditional activation of CD137 signaling by MCLA-145, triggered by neighboring cells expressing >5000 copies of PD-L1, may provide both safety and potency advantages.
    DOI:  https://doi.org/10.1038/s41467-021-24767-5
  4. Nat Rev Urol. 2021 Jul 22.
      Senescent cells accumulate with age in all tissues. Although senescent cells undergo cell-cycle arrest, these cells remain metabolically active and their secretome - known as the senescence-associated secretory phenotype - is responsible for a systemic pro-inflammatory state, which contributes to an inflammatory microenvironment. Senescent cells can be found in the ageing prostate and the senescence-associated secretory phenotype and can be linked to BPH and prostate cancer. Indeed, a number of signalling pathways provide biological plausibility for the role of senescence in both BPH and prostate cancer, although proving causality is difficult. The theory of senescence as a mechanism for prostate disease has a number of clinical implications and could offer opportunities for targeting in the future.
    DOI:  https://doi.org/10.1038/s41585-021-00496-8
  5. Nat Immunol. 2021 Jul 19.
      During chronic viral infection, CD8+ T cells develop into three major phenotypically and functionally distinct subsets: Ly108+TCF-1+ progenitors, Ly108-CX3CR1- terminally exhausted cells and the recently identified CX3CR1+ cytotoxic effector cells. Nevertheless, how CX3CR1+ effector cell differentiation is transcriptionally and epigenetically regulated remains elusive. Here, we identify distinct gene regulatory networks and epigenetic landscapes underpinning the formation of these subsets. Notably, our data demonstrate that CX3CR1+ effector cells bear a striking similarity to short-lived effector cells during acute infection. Genetic deletion of Tbx21 significantly diminished formation of the CX3CR1+ subset. Importantly, we further identify a previously unappreciated role for the transcription factor BATF in maintaining a permissive chromatin structure that allows the transition from TCF-1+ progenitors to CX3CR1+ effector cells. BATF directly bound to regulatory regions near Tbx21 and Klf2, modulating their enhancer accessibility to facilitate the transition. These mechanistic insights can potentially be harnessed to overcome T cell exhaustion during chronic infection and cancer.
    DOI:  https://doi.org/10.1038/s41590-021-00965-7
  6. Proc Natl Acad Sci U S A. 2021 Jul 27. pii: e2104758118. [Epub ahead of print]118(30):
      Dysfunction in T cells limits the efficacy of cancer immunotherapy. We profiled the epigenome, transcriptome, and enhancer connectome of exhaustion-prone GD2-targeting HA-28z chimeric antigen receptor (CAR) T cells and control CD19-targeting CAR T cells, which present less exhaustion-inducing tonic signaling, at multiple points during their ex vivo expansion. We found widespread, dynamic changes in chromatin accessibility and three-dimensional (3D) chromosome conformation preceding changes in gene expression, notably at loci proximal to exhaustion-associated genes such as PDCD1, CTLA4, and HAVCR2, and increased DNA motif access for AP-1 family transcription factors, which are known to promote exhaustion. Although T cell exhaustion has been studied in detail in mice, we find that the regulatory networks of T cell exhaustion differ between species and involve distinct loci of accessible chromatin and cis-regulated target genes in human CAR T cell exhaustion. Deletion of exhaustion-specific candidate enhancers of PDCD1 suppress the expression of PD-1 in an in vitro model of T cell dysfunction and in HA-28z CAR T cells, suggesting enhancer editing as a path forward in improving cancer immunotherapy.
    Keywords:  cancer immunotherapy; enhancer editing; epigenomics
    DOI:  https://doi.org/10.1073/pnas.2104758118
  7. Sci Signal. 2021 Jul 20. pii: eabc5884. [Epub ahead of print]14(692):
      Murine γδ17 cells, which are T cells that bear the γδ T cell receptor (TCRγδ) and secrete interleukin-17A (IL-17A), are generated in the thymus and are critical for various immune responses. Although strong TCRγδ signals are required for the development of interferon-γ (IFN-γ)-secreting γδ cells (γδIFN cells), the generation of γδ17 cells requires weaker TCRγδ signaling. Here, we demonstrated that constrained activation of the kinase Syk downstream of TCRγδ was required for the thymic development of γδ17 cells. Increasing or decreasing Syk activity by stimulating TCRγδ or inhibiting Syk, respectively, substantially reduced γδ17 cell numbers. This delimited Syk activity optimally engaged the phosphoinositide 3-kinase (PI3K)-Akt signaling pathway, which maintained the expression of master regulators of the IL-17 program, RORγt and c-Maf. Inhibition of PI3K not only abrogated γδ17 cell development but also augmented the development of a distinct, previously undescribed subset of γδ T cells. These CD8+Ly6a+ γδ T cells had a type-I IFN gene expression signature and expanded in response to stimulation with IFN-β. Collectively, these studies elucidate how weaker TCRγδ signaling engages distinct signaling pathways to specify the γδ17 cell fate and identifies a role for type-I IFNs in γδ T cell development.
    DOI:  https://doi.org/10.1126/scisignal.abc5884
  8. Oncogene. 2021 Jul 21.
      The exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell-T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.
    DOI:  https://doi.org/10.1038/s41388-021-01946-8
  9. Nat Immunol. 2021 Jul 19.
      The transcription factors nuclear factor of activated T cells (NFAT) and activator protein 1 (AP-1; Fos-Jun) cooperate to promote the effector functions of T cells, but NFAT in the absence of AP-1 imposes a negative feedback program of T cell hyporesponsiveness (exhaustion). Here, we show that basic leucine zipper ATF-like transcription factor (BATF) and interferon regulatory factor 4 (IRF4) cooperate to counter T cell exhaustion in mouse tumor models. Overexpression of BATF in CD8+ T cells expressing a chimeric antigen receptor (CAR) promoted the survival and expansion of tumor-infiltrating CAR T cells, increased the production of effector cytokines, decreased the expression of inhibitory receptors and the exhaustion-associated transcription factor TOX and supported the generation of long-lived memory T cells that controlled tumor recurrence. These responses were dependent on BATF-IRF interaction, since cells expressing a BATF variant unable to interact with IRF4 did not survive in tumors and did not effectively delay tumor growth. BATF may improve the antitumor responses of CAR T cells by skewing their phenotypes and transcriptional profiles away from exhaustion and towards increased effector function.
    DOI:  https://doi.org/10.1038/s41590-021-00964-8
  10. Clin Immunol. 2021 Jul 15. pii: S1521-6616(21)00134-0. [Epub ahead of print]229 108797
      The global obesity epidemic is contributing to increased prevalence of diseases fuelled by chronic inflammation, including cancer. Oesophageal adenocarcinoma (OAC) is an obesity-associated malignancy with increasing prevalence, dismal prognosis, and severely dysregulated immune processes. We previously reported that αβ T cells migrate to omentum and liver in OAC and contribute to inflammation in these tissues. Here, we assessed the tissue distribution and phenotype of gamma/delta (γδ) T cells in the blood, omentum, liver and tumour of OAC patients. Our data show that the Vδ1 and Vδ3 subsets of γδ T cells are most prevalent in omentum and liver of OAC patients. Furthermore, γδ T cells are predominantly pro-inflammatory in these tissues, and co-express IFN-γ and IL-17. Moreover, γδ T cells exhibit cytotoxic capabilities in OAC omentum and liver. This study provides the first indication that γδ T cells contribute to obesity-associated inflammation in OAC and might be exploited therapeutically.
    Keywords:  Inflammation; Obesity; Oesophageal adenocarcinoma; Omentum; γδ T cells
    DOI:  https://doi.org/10.1016/j.clim.2021.108797
  11. Nature. 2021 Jul;595(7868): 501-510
      The unconventional T cell compartment encompasses a variety of cell subsets that straddle the line between innate and adaptive immunity, often reside at mucosal surfaces and can recognize a wide range of non-polymorphic ligands. Recent advances have highlighted the role of unconventional T cells in tissue homeostasis and disease. In this Review, we recast unconventional T cell subsets according to the class of ligand that they recognize; their expression of semi-invariant or diverse T cell receptors; the structural features that underlie ligand recognition; their acquisition of effector functions in the thymus or periphery; and their distinct functional properties. Unconventional T cells follow specific selection rules and are poised to recognize self or evolutionarily conserved microbial antigens. We discuss these features from an evolutionary perspective to provide insights into the development and function of unconventional T cells. Finally, we elaborate on the functional redundancy of unconventional T cells and their relationship to subsets of innate and adaptive lymphoid cells, and propose that the unconventional T cell compartment has a critical role in our survival by expanding and complementing the role of the conventional T cell compartment in protective immunity, tissue healing and barrier function.
    DOI:  https://doi.org/10.1038/s41586-021-03578-0
  12. Cancers (Basel). 2021 Jul 16. pii: 3578. [Epub ahead of print]13(14):
      The vast majority of studies on T cell biology in tumor immunity have focused on peptide-reactive conventional T cells that are restricted to polymorphic major histocompatibility complex molecules. However, emerging evidence indicated that unconventional T cells, including γδ T cells, natural killer T (NKT) cells and mucosal-associated invariant T (MAIT) cells are also involved in tumor immunity. Unconventional T cells span the innate-adaptive continuum and possess the unique ability to rapidly react to nonpeptide antigens via their conserved T cell receptors (TCRs) and/or to activating cytokines to orchestrate many aspects of the immune response. Since unconventional T cell lineages comprise discrete functional subsets, they can mediate both anti- and protumoral activities. Here, we review the current understanding of the functions and regulatory mechanisms of protumoral unconventional T cell subsets in the tumor environment. We also discuss the therapeutic potential of these deleterious subsets in solid cancers and why further feasibility studies are warranted.
    Keywords:  MAIT; NKT; cytokines; immunoregulation; protumor; solid cancer; tumor microenvironment; unconventional T cells; γδT
    DOI:  https://doi.org/10.3390/cancers13143578
  13. Biochim Biophys Acta Mol Cell Res. 2021 Jul 15. pii: S0167-4889(21)00153-1. [Epub ahead of print] 119099
      Cellular senescence generates a permanent cell cycle arrest, characterized by apoptosis resistance and a pro-inflammatory senescence-associated secretory phenotype (SASP). Physiologically, senescent cells promote tissue remodeling during development and after injury. However, when accumulated over a certain threshold as happens during aging or after cellular stress, senescent cells contribute to the functional decline of tissues, participating in the generation of several diseases. Cellular senescence is accompanied by increased mitochondrial metabolism. How mitochondrial function is regulated and what role it plays in senescent cell homeostasis is poorly understood. Mitochondria are functionally and physically coupled to the endoplasmic reticulum (ER), the major calcium (Ca2+) storage organelle in mammalian cells, through special domains known as mitochondria-ER contacts (MERCs). In this domain, the release of Ca2+ from the ER is mainly regulated by inositol 1,4,5-trisphosphate receptors (IP3Rs), a family of three Ca2+ release channels activated by a ligand (IP3). IP3R-mediated Ca2+ release is transferred to mitochondria through the mitochondrial Ca2+ uniporter (MCU), where it modulates the activity of several enzymes and transporters impacting its bioenergetic and biosynthetic function. Here, we review the possible connection between ER to mitochondria Ca2+ transfer and senescence. Understanding the pathways that contribute to senescence is essential to reveal new therapeutic targets that allow either delaying senescent cell accumulation or reduce senescent cell burden to alleviate multiple diseases.
    Keywords:  MERCs; calcium; metabolism; mitochondria; senescence
    DOI:  https://doi.org/10.1016/j.bbamcr.2021.119099
  14. Front Cell Neurosci. 2021 ;15 698126
      The immune system is crucial for defending against various invaders, such as pathogens, cancer cells or misfolded proteins. With increasing age, the diminishing immune response, known as immunosenescence, becomes evident. Concomitantly, some diseases like infections, autoimmune diseases, chronic inflammatory diseases and cancer, accumulate with age. Different cell types are part of the innate immunity response and produce soluble factors, cytokines, chemokines, and type I interferons. Improper maturation of innate immune cells or their dysfunction have been linked to numerous age-related diseases. In parallel to the occurrence of the many functional facets of the immune response, a symbiotic microbiota had been acquired. For the relevant and situation-dependent function of the immune system the microbiome plays an essential role because it fine-tunes the immune system and its responses during life. Nevertheless, how the age-related alterations in the microbiota are reflected in the innate immune system, is still poorly understood. With this review, we provide an up-to-date overview on our present understanding of the gut microbiota effects on innate immunity, with a particular emphasis on aging-associated changes in the gut microbiota and the implications for the brain innate immune response.
    Keywords:  bacteria; brain; gut micobiota; inflammaging; innate immunity; metabolites; microglia; senescence
    DOI:  https://doi.org/10.3389/fncel.2021.698126
  15. Int J Mol Sci. 2021 Jul 14. pii: 7525. [Epub ahead of print]22(14):
      Mitochondria are vital to life and provide biological energy for other organelles and cell physiological processes. On the mitochondrial double layer membrane, there are a variety of channels and transporters to transport different metal ions, such as Ca2+, K+, Na+, Mg2+, Zn2+ and Fe2+/Fe3+. Emerging evidence in recent years has shown that the metal ion transport is essential for mitochondrial function and cellular metabolism, including oxidative phosphorylation (OXPHOS), ATP production, mitochondrial integrity, mitochondrial volume, enzyme activity, signal transduction, proliferation and apoptosis. The homeostasis of mitochondrial metal ions plays an important role in maintaining mitochondria and cell functions and regulating multiple diseases. In particular, channels and transporters for transporting mitochondrial metal ions are very critical, which can be used as potential targets to treat neurodegeneration, cardiovascular diseases, cancer, diabetes and other metabolic diseases. This review summarizes the current research on several types of mitochondrial metal ion channels/transporters and their functions in cell metabolism and diseases, providing strong evidence and therapeutic strategies for further insights into related diseases.
    Keywords:  cell metabolism; disease; mitochondrial function; mitochondrial metal ion homeostasis; mitochondrial metal ion transport
    DOI:  https://doi.org/10.3390/ijms22147525
  16. Ageing Res Rev. 2021 Jul 16. pii: S1568-1637(21)00157-4. [Epub ahead of print] 101410
      Human aging is a multifactorial phenomenon that affects numerous organ systems and cellular processes, with the immune system being one of the most dysregulated. Immunosenescence, the gradual deterioration of the immune system, and inflammaging, a chronic inflammatory state that persists in the elderly, are among the plethora of immune changes that occur during aging. Almost all populations of immune cells change with age in terms of numbers and/or activity. These alterations are in general highly detrimental, resulting in an increased susceptibility to infections, reduced healing abilities, and altered homeostasis that promote the emergence of age-associated diseases such as cancer, diabetes, and other diseases associated with inflammation. Thanks to recent developments, several strategies have been proposed to target central immunological processes or specific immune subpopulations affected by aging. These therapeutic approaches could soon be applied in the clinic to slow down or even reverse specific age-induced immune changes in order to rejuvenate the immune system and prevent or reduce the impact of various diseases. Due to its systemic nature and interconnection with all the other systems in the body, the immune system is an attractive target for aging intervention because relatively targeted modifications to a small set of cells have the potential to improve the health of multiple organ systems.. Therefore, anti-aging immune targeting therapies could represent a potent approach for improving healthspan. Here, we review aging changes in the major components of the immune system, we summarize the current immune-targeting therapeutic approaches in the context of aging and discuss the future directions in the field of immune rejuvenation.
    Keywords:  anti-aging; geroscience; healthy longevity; immune system; immunosenescence; inflammation
    DOI:  https://doi.org/10.1016/j.arr.2021.101410
  17. Nature. 2021 Jul 21.
      PD-1 blockade unleashes CD8 T cells1, including those specific for mutation-associated neoantigens (MANA), but factors in the tumour microenvironment can inhibit these T cell responses. Single-cell transcriptomics have revealed global T cell dysfunction programs in tumour-infiltrating lymphocytes (TIL). However, the majority of TIL do not recognize tumour antigens2, and little is known about transcriptional programs of MANA-specific TIL. Here, we identify MANA-specific T cell clones using the MANA functional expansion of specific T cells assay3 in neoadjuvant anti-PD-1-treated non-small cell lung cancers (NSCLC). We use their T cell receptors as a 'barcode' to track and analyse their transcriptional programs in the tumour microenvironment using coupled single-cell RNA sequencing and T cell receptor sequencing. We find both MANA- and virus-specific clones in TIL, regardless of response, and MANA-, influenza- and Epstein-Barr virus-specific TIL each have unique transcriptional programs. Despite exposure to cognate antigen, MANA-specific TIL express an incompletely activated cytolytic program. MANA-specific CD8 T cells have hallmark transcriptional programs of tissue-resident memory (TRM) cells, but low levels of interleukin-7 receptor (IL-7R) and are functionally less responsive to interleukin-7 (IL-7) compared with influenza-specific TRM cells. Compared with those from responding tumours, MANA-specific clones from non-responding tumours express T cell receptors with markedly lower ligand-dependent signalling, are largely confined to HOBIThigh TRM subsets, and coordinately upregulate checkpoints, killer inhibitory receptors and inhibitors of T cell activation. These findings provide important insights for overcoming resistance to PD-1 blockade.
    DOI:  https://doi.org/10.1038/s41586-021-03752-4
  18. Nature. 2021 Jul 21.
      Interactions between T cell receptors (TCRs) and their cognate tumour antigens are central to antitumour immune responses1-3; however, the relationship between phenotypic characteristics and TCR properties is not well elucidated. Here we show, by linking the antigenic specificity of TCRs and the cellular phenotype of melanoma-infiltrating lymphocytes at single-cell resolution, that tumour specificity shapes the expression state of intratumoural CD8+ T cells. Non-tumour-reactive T cells were enriched for viral specificities and exhibited a non-exhausted memory phenotype, whereas melanoma-reactive lymphocytes predominantly displayed an exhausted state that encompassed diverse levels of differentiation but rarely acquired memory properties. These exhausted phenotypes were observed both among clonotypes specific for public overexpressed melanoma antigens (shared across different tumours) or personal neoantigens (specific for each tumour). The recognition of such tumour antigens was provided by TCRs with avidities inversely related to the abundance of cognate targets in melanoma cells and proportional to the binding affinity of peptide-human leukocyte antigen (HLA) complexes. The persistence of TCR clonotypes in peripheral blood was negatively affected by the level of intratumoural exhaustion, and increased in patients with a poor response to immune checkpoint blockade, consistent with chronic stimulation mediated by residual tumour antigens. By revealing how the quality and quantity of tumour antigens drive the features of T cell responses within the tumour microenvironment, we gain insights into the properties of the anti-melanoma TCR repertoire.
    DOI:  https://doi.org/10.1038/s41586-021-03704-y