bims-imseme Biomed News
on Immunosenescence and T cell metabolism
Issue of 2021‒05‒30
nine papers selected by
Pierpaolo Ginefra
Ludwig Institute for Cancer Research


  1. Nat Commun. 2021 May 28. 12(1): 3236
      Adenosine is an immunosuppressive factor that limits anti-tumor immunity through the suppression of multiple immune subsets including T cells via activation of the adenosine A2A receptor (A2AR). Using both murine and human chimeric antigen receptor (CAR) T cells, here we show that targeting A2AR with a clinically relevant CRISPR/Cas9 strategy significantly enhances their in vivo efficacy, leading to improved survival of mice. Effects evoked by CRISPR/Cas9 mediated gene deletion of A2AR are superior to shRNA mediated knockdown or pharmacological blockade of A2AR. Mechanistically, human A2AR-edited CAR T cells are significantly resistant to adenosine-mediated transcriptional changes, resulting in enhanced production of cytokines including IFNγ and TNF, and increased expression of JAK-STAT signaling pathway associated genes. A2AR deficient CAR T cells are well tolerated and do not induce overt pathologies in mice, supporting the use of CRISPR/Cas9 to target A2AR for the improvement of CAR T cell function in the clinic.
    DOI:  https://doi.org/10.1038/s41467-021-23331-5
  2. FEBS J. 2021 May 25.
      Adaptation of cellular function with the nutrient environment is essential for survival. Failure to adapt can lead to cell death and/or disease. Indeed, energy metabolism alterations are a major contributing factor for many pathologies, including cancer, cardiovascular disease, and diabetes. In particular, a primary characteristic of cancer cells is altered metabolism that promotes survival and proliferation even in the presence of limited nutrients. Interestingly, recent studies demonstrate that metabolic pathways produce intermediary metabolites that directly influence epigenetic modifications in the genome. Emerging evidence demonstrates that metabolic processes in cancer cells fuel malignant growth, in part, through epigenetic regulation of gene expression programs important for proliferation and adaptive survival. In this review, recent progress towards understanding the relationship of cancer cell metabolism, epigenetic modification, and transcriptional regulation will be discussed. Specifically, the need for adaptive cell metabolism and its modulation in cancer cells will be introduced. Current knowledge on the emerging field of metabolite production and epigenetic modification will also be reviewed. Alterations of DNA (de)methylation, histone modifications, such as (de)methylation and (de)acylation, as well as chromatin remodeling, will be discussed in the context of cancer cell metabolism. Finally, how these epigenetic alterations contribute to cancer cell phenotypes will summarized. Collectively, these studies reveal that both metabolic and epigenetic pathways in cancer cells are closely linked, representing multiple opportunities to therapeutically target the unique features of malignant growth.
    Keywords:  DNA methylation; acetylation; acylation; cancer; glycolysis; histone; metabolism; methylation; oxidative phosphorylation
    DOI:  https://doi.org/10.1111/febs.16032
  3. Curr Opin HIV AIDS. 2021 May 25.
      PURPOSE OF REVIEW: People living with HIV who fail to fully reconstitute CD4+T cells after combination antiretroviral therapy therapy (i.e. immune nonresponders or INRs) have higher frequencies of exhausted T cells are enriched in a small pool of memory T cells where HIV persists and have an abundance of plasma metabolites of bacterial and host origins. Here, we review the current understanding of critical features of T cell exhaustion associated with HIV persistence; we propose to develop novel strategies to reinvigorate the effector function of exhausted T cells with the aim of purging the HIV reservoir.RECENT FINDINGS: We and others have recently reported the role of microbiota and metabolites in regulating T cell homeostasis, effector function, and senescence. We have observed that bacteria of the Firmicute phyla (specifically members of the genus Lactobacilli), associated metabolites (β-hydroxybutyrate family), and bile acids can promote regulatory T cell differentiation in INRs with a senescent peripheral blood gene expression profile.
    SUMMARY: The cross-talk between immune cells and gut microbes at the intestinal mucosa (a major effector site of the mucosal immune response), regulates the priming, proliferation, and differentiation of local and distant immune responses. This cross-talk via the production of major metabolite families (like serum amyloid A, polysaccharide A, and aryl hydrocarbon receptor ligands) plays a key role in maintaining immune homeostasis. HIV infection/persistence leads to gut dysbiosis/microbial translocation, resulting in the local and systemic dissemination of microbes. The ensuing increase in immune cell-microbiome (including pathogens) interaction promotes heightened inflammatory responses and is implicated in regulating innate/adaptive immune effector differentiation cascades that drive HIV persistence. The exact role of the microbiota and associated metabolites in regulating T cell- mediated effector functions that can restrict HIV persistence continue to be the subject of on-going studies and are reviewed here.
    DOI:  https://doi.org/10.1097/COH.0000000000000692
  4. Nat Immunol. 2021 Jun;22(6): 746-756
      T cell exhaustion presents one of the major hurdles to cancer immunotherapy. Among exhausted CD8+ tumor-infiltrating lymphocytes, the terminally exhausted subset contributes directly to tumor cell killing owing to its cytotoxic effector function. However, this subset does not respond to immune checkpoint blockades and is difficult to be reinvigorated with restored proliferative capacity. Here, we show that a half-life-extended interleukin-10-Fc fusion protein directly and potently enhanced expansion and effector function of terminally exhausted CD8+ tumor-infiltrating lymphocytes by promoting oxidative phosphorylation, a process that was independent of the progenitor exhausted T cells. Interleukin-10-Fc was a safe and highly efficient metabolic intervention that synergized with adoptive T cell transfer immunotherapy, leading to eradication of established solid tumors and durable cures in the majority of treated mice. These findings show that metabolic reprogramming by upregulating mitochondrial pyruvate carrier-dependent oxidative phosphorylation can revitalize terminally exhausted T cells and enhance the response to cancer immunotherapy.
    DOI:  https://doi.org/10.1038/s41590-021-00940-2
  5. Front Immunol. 2021 ;12 660944
      Hypoxia, angiogenesis, and immunosuppression have been proposed to be interrelated events that fuel tumor progression and impair the clinical effectiveness of anti-tumor therapies. Here we present new mechanistic data highlighting the role of hypoxia in fine-tuning CD8 T cell exhaustion in vitro, in an attempt to reconcile seemingly opposite evidence regarding the impact of hypoxia on functional features of exhausted CD8 T cells. Focusing on the recently characterized terminally-differentiated and progenitor exhausted CD8 T cells, we found that both hypoxia and its regulated mediator, vascular endothelial growth factor (VEGF)-A, promote the differentiation of PD-1+ TIM-3+ CXCR5+ terminally exhausted-like CD8 T cells at the expense of PD-1+ TIM-3- progenitor-like subsets without affecting tumor necrosis factor (TNF)-α and interferon (IFN)-γ production or granzyme B (GZMB) expression by these subpopulations. Interestingly, hypoxia accentuated the proangiogenic secretory profile in exhausted CD8 T cells. VEGF-A was the main factor differentially secreted by exhausted CD8 T cells under hypoxic conditions. In this sense, we found that VEGF-A contributes to generation of terminally exhausted CD8 T cells during in vitro differentiation. Altogether, our findings highlight the reciprocal regulation between hypoxia, angiogenesis, and immunosuppression, providing a rational basis to optimize synergistic combinations of antiangiogenic and immunotherapeutic strategies, with the overarching goal of improving the efficacy of these treatments.
    Keywords:  CD8 T cell exhaustion; Hypoxia; VEGF-A; anti cancer agents; immunosuppression
    DOI:  https://doi.org/10.3389/fimmu.2021.660944
  6. JCI Insight. 2021 May 25. pii: 150744. [Epub ahead of print]
      T cell receptor (TCR) stimulation leads to expression of the transcription factor TOX. Prolonged TCR signaling, such as encountered during chronic infections or in tumors, leads to sustained TOX expression, which is required for the induction of a state of exhaustion or dysfunction. While CD8 memory T cells (Tmem) in mice typically do not express TOX at steady state, some human Tmem express TOX, but appear fully functional. This seeming discrepancy between mouse and human T cells has led to the speculation that TOX is differentially regulated between these species, which could complicate the interpretation of pre-clinical mouse model studies. We report here that similarly to TCR-mediated signals, inflammatory cytokines are also sufficient to increase TOX expression in human and mouse Tmem. Thus, TOX expression is controlled by the environment, which provides an explanation for the different TOX expression patterns encountered in T cells isolated from specific pathogen free laboratory mice versus humans. Finally, we report that TOX is not necessary for cytokine-driven expression of PD-1. Overall, our data highlight that the mechanisms regulating TOX expression are conserved across species and indicate that TOX expression reflects a T cell's activation state, and does not necessarily correlate with T cell dysfunction.
    Keywords:  Immunology; Inflammation; T cells
    DOI:  https://doi.org/10.1172/jci.insight.150744
  7. Nat Metab. 2021 May;3(5): 714-727
      Single-cell motility is spatially heterogeneous and driven by metabolic energy. Directly linking cell motility to cell metabolism is technically challenging but biologically important. Here, we use single-cell metabolic imaging to measure glycolysis in individual endothelial cells with genetically encoded biosensors capable of deciphering metabolic heterogeneity at subcellular resolution. We show that cellular glycolysis fuels endothelial activation, migration and contraction and that sites of high lactate production colocalize with active cytoskeletal remodelling within an endothelial cell. Mechanistically, RhoA induces endothelial glycolysis for the phosphorylation of cofilin and myosin light chain in order to reorganize the cytoskeleton and thus control cell motility; RhoA activation triggers a glycolytic burst through the translocation of the glucose transporter SLC2A3/GLUT3 to fuel the cellular contractile machinery, as demonstrated across multiple endothelial cell types. Our data indicate that Rho-GTPase signalling coordinates energy metabolism with cytoskeleton remodelling to regulate endothelial cell motility.
    DOI:  https://doi.org/10.1038/s42255-021-00390-y
  8. J Exp Med. 2021 Aug 02. pii: e20202512. [Epub ahead of print]218(8):
      In response to infection, pathogen-specific CD8 T cells differentiate into functionally diverse effector and memory T cell populations critical for resolving disease and providing durable immunity. Through small-molecule inhibition, RNAi studies, and induced genetic deletion, we reveal an essential role for the chromatin modifier and BET family member BRD4 in supporting the differentiation and maintenance of terminally fated effector CD8 T cells during infection. BRD4 bound diverse regulatory regions critical to effector T cell differentiation and controlled transcriptional activity of terminal effector-specific super-enhancers in vivo. Consequentially, induced deletion of Brd4 or small molecule-mediated BET inhibition impaired maintenance of a terminal effector T cell phenotype. BRD4 was also required for terminal differentiation of CD8 T cells in the tumor microenvironment in murine models, which we show has implications for immunotherapies. Taken together, these data reveal an unappreciated requirement for BRD4 in coordinating activity of cis regulatory elements to control CD8 T cell fate and lineage stability.
    DOI:  https://doi.org/10.1084/jem.20202512