Virol J. 2025 Apr 25. 22(1): 117
Dengue virus (DENV) infection imposes a significant global health burden, driven by its ability to manipulate host cellular processes to facilitate replication and evade immune defenses. This review explores the complex interplay between DENV, host immunometabolism, and signaling pathways. DENV induces metabolic reprogramming, including glycolytic upregulation, lipid droplet utilization through lipophagy, and alterations in amino acid metabolism, to fulfill its energy and biosynthetic needs. The virus also disrupts mitochondrial dynamics, leading to increased reactive oxygen species (ROS) production, which modulates immune responses but may also contribute to oxidative stress and severe pathology. Concurrently, DENV hijacks host signaling pathways, including PI3K/Akt, NF-κB, and JAK/STAT, to suppress apoptosis, evade type I interferon responses, and drive pro-inflammatory cytokine production. The interplay between these signaling and metabolic pathways highlights a dual role of host processes: enabling viral replication while activating antiviral immune responses. The review also examines potential therapeutic strategies targeting metabolic and signaling pathways to combat DENV infection, including glycolysis inhibitors, lipid metabolism modulators, and host-directed therapies. While significant progress has been made in understanding DENV-induced immunometabolism, further research is needed to elucidate the precise molecular mechanisms and translate these findings into clinical applications. This study underscores the importance of integrating metabolic and signaling insights to identify novel therapeutic targets against DENV and related flaviviruses, addressing the critical need for effective antiviral interventions.
Keywords: DENV; Immune response; Metabolic pathway; Viral infection