bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2024‒02‒18
twenty-two papers selected by
Dylan Ryan, University of Cambridge



  1. Cell Rep. 2024 Feb 08. pii: S2211-1247(24)00067-6. [Epub ahead of print]43(2): 113739
      Glucose uptake increases during B cell activation and antibody-secreting cell (ASC) differentiation, but conflicting findings prevent a clear metabolic profile at different stages of B cell activation. Deletion of the glucose transporter type 1 (GLUT1) gene in mature B cells (GLUT1-cKO) results in normal B cell development, but it reduces germinal center B cells and ASCs. GLUT1-cKO mice show decreased antigen-specific antibody titers after vaccination. In vitro, GLUT1-deficient B cells show impaired activation, whereas established plasmablasts abolish glycolysis, relying on mitochondrial activity and fatty acids. Transcriptomics and metabolomics reveal an altered anaplerotic balance in GLUT1-deficient ASCs. Despite attempts to compensate for glucose deprivation by increasing mitochondrial mass and gene expression associated with glycolysis, the tricarboxylic acid cycle, and hexosamine synthesis, GLUT1-deficient ASCs lack the metabolites for energy production and mitochondrial respiration, limiting protein synthesis. We identify GLUT1 as a critical metabolic player defining the germinal center response and humoral immunity.
    Keywords:  CP: Immunology; CP: Metabolism; GLUT1; adaptive immune response; antibody-secreting cell; glucose transporter type 1; glycolysis; metabolism; mitochondrial respiration; plasma cell; plasmablast
    DOI:  https://doi.org/10.1016/j.celrep.2024.113739
  2. Am J Respir Cell Mol Biol. 2024 Feb 12.
      Sepsis is a systemic inflammatory response that requires effective macrophage metabolic functions to resolve ongoing inflammation. Previous work showed that the mechanosensitive cation channel, transient receptor potential vanilloid 4 (TRPV4), mediates macrophage phagocytosis and cytokine production in response to lung infection. Here, we show that TRPV4 regulates glycolysis in a stiffness dependent manner by augmenting macrophage glucose uptake by GLUT1. In addition, TRPV4 is required for lipopolysaccharide (LPS)-induced phagolysosome maturation in a GLUT1-dependent manner. In a cecal slurry mouse model of sepsis, TRPV4 regulates sepsis-induced glycolysis as measured by bronchoalveolar lavage fluid (BALF) lactate and sepsis-induced lung injury as measured by BALF total protein and lung compliance. TRPV4 is necessary for bacterial clearance in the peritoneum to limit sepsis-induced lung injury. Interestingly, BALF lactate is increased in septic patients compared with healthy controls, supporting the relevance of lung cell glycolysis to human sepsis. These data show that macrophage TRPV4 is required for glucose uptake through GLUT1 for effective phagolysosome maturation to limit sepsis-induced lung injury. Our work presents TRPV4 as a potential target to protect the lung from injury in sepsis.
    Keywords:  TRPV4; glycolysis; lung injury; macrophage; sepsis
    DOI:  https://doi.org/10.1165/rcmb.2023-0456OC
  3. Int Immunol. 2024 Feb 14. pii: dxae007. [Epub ahead of print]
      Adoptive cell therapy (ACT) is an immunotherapeutic approach that involves isolating T cells from a patient, culturing them ex vivo, then re-infusing the cells back into the patient. Although this strategy has shown remarkable efficacy in hematological malignancies, the solid-tumour microenvironment (TME) has presented serious challenges for therapy efficacy. Particularly, the TME has immunosuppressive signaling and presents a metabolically challenging environment that leads to T cell suppression. T cell metabolism is an expanding field of research with a focus on understanding its inherent link to T cell function. Here, we review the current model of T cell metabolism from naïve cells through effector and memory life stages, as well as updates to the model from recent literature. These models of metabolism have provided us with the tools and understanding to explore T cell metabolic and mitochondrial insufficiency in the TME. We discuss manipulations that can be made to these mitochondrial and metabolic pathways to enhance persistence of infused T cells, overcome the metabolically challenging TME and improve the efficacy of therapy in ACT models. Further understanding and investigation of the impact of metabolic pathways on T cell performance could contribute to improving therapy efficacy for patients.
    Keywords:  Cancer Immunology; Immunometabolism; Immunotherapy
    DOI:  https://doi.org/10.1093/intimm/dxae007
  4. Nat Cardiovasc Res. 2023 Dec;2(12): 1277-1290
      After myocardial infarction (MI), emergency hematopoiesis produces inflammatory myeloid cells that accelerate atherosclerosis and promote heart failure. Since the balance between glycolysis and mitochondrial metabolism regulates hematopoietic stem cell homeostasis, metabolic cues may influence emergency myelopoiesis. Here, we show in humans and female mice that hematopoietic progenitor cells increase fatty acid metabolism after MI. Blockade of fatty acid oxidation by deleting carnitine palmitoyltransferase (Cpt1A) in hematopoietic cells of Vav1Cre/+Cpt1Afl/fl mice limited hematopoietic progenitor proliferation and myeloid cell expansion after MI. We also observed reduced bone marrow adiposity in humans, pigs and mice following MI. Inhibiting lipolysis in adipocytes using AdipoqCreERT2Atglfl/fl mice or local depletion of bone marrow adipocytes in AdipoqCreERT2iDTR mice also curbed emergency hematopoiesis. Furthermore, systemic and regional sympathectomy prevented bone marrow adipocyte shrinkage after MI. These data establish a critical role for fatty acid metabolism in post-MI emergency hematopoiesis.
    Keywords:  Myocardial infarction; adipocytes; bone marrow; emergency hematopoiesis; fatty acid oxidation; lipolysis
    DOI:  https://doi.org/10.1038/s44161-023-00388-7
  5. Trends Endocrinol Metab. 2024 Feb 13. pii: S1043-2760(24)00019-5. [Epub ahead of print]
      Lymphocytes are crucial for protective immunity against infection and cancers; however, immune dysregulation can lead to autoimmune diseases such as systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). Metabolic adaptation controls lymphocyte fate; thus, metabolic reprogramming can contribute to the pathogenesis of autoimmune diseases. Here, we summarize recent advances on how metabolic reprogramming determines the autoreactive and proinflammatory nature of lymphocytes in SLE and RA, unraveling molecular mechanisms and providing therapeutic targets for human autoimmune diseases.
    Keywords:  B cells; T cells; autoimmune diseases; immunometabolism; lymphocytes; rheumatoid arthritis; systemic lupus erythematosus
    DOI:  https://doi.org/10.1016/j.tem.2024.01.005
  6. Anasthesiol Intensivmed Notfallmed Schmerzther. 2024 Feb;59(2): 78-94
      Immunometabolism is a fascinating field of research that investigates the interactions between metabolic processes and the immune response. This intricate connection plays a pivotal role in regulating inflammatory reactions and consequently exerts a significant impact on the course of sepsis. The proinflammatory response during an immune reaction is closely tied to a high energy demand in immune cells. As a result, proinflammatory immune cells rapidly require substantial amounts of energy in the form of ATP, necessitating a fundamental and swift shift in their metabolism, i.e., their means of generating energy. This entails a marked increase in glycolysis within the proinflammatory response, thereby promptly meeting the energy requirements and providing essential metabolic building blocks for the biosynthesis of macromolecules. Alongside glycolysis, there is heightened activity in the pentose phosphate pathway (PPP). The PPP significantly contributes to NADPH production within the cell, thus maintaining redox equilibrium. Elevated PPP activity consequently leads to an increased NADPH level, resulting in enhanced production of reactive oxygen species (ROS) and nitric oxide (NO). While these molecules are crucial for pathogen elimination, an excess can also induce tissue damage. Simultaneously, there are dual interruptions in the citric acid cycle. In the cellular resting state, the citric acid cycle acts as a sort of "universal processor", where metabolic byproducts of glycolysis, fatty acid breakdown, and amino acid degradation are initially transformed into NADH and FADH2, subsequently yielding ATP. While the citric acid cycle and its connected oxidative phosphorylation predominantly generate energy at rest, it becomes downregulated in the proinflammatory phase of sepsis. The two interruptions lead to an accumulation of citrate and succinate within cells, reflecting mitochondrial dysfunction. Additionally, the significantly heightened glycolysis through fermentation yields lactate, a pivotal metabolite for sepsis diagnosis and prognosis. Conversely, cells in an anti-inflammatory state revert to a metabolic profile akin to the resting state: Glycolysis is attenuated, PPP is suppressed, and the citric acid cycle is reactivated. Of particular interest is that not only does the immune reaction influence metabolic pathways, but this connection also operates in reverse. Thus, modulation of metabolic pathways also modulates the immunity of the corresponding cell and thereby the state of the immune system itself. This could potentially serve as an intriguing avenue in sepsis therapy.
    DOI:  https://doi.org/10.1055/a-2070-3170
  7. Nat Commun. 2024 Feb 13. 15(1): 1333
      Commensal bacteria generate immensely diverse active metabolites to maintain gut homeostasis, however their fundamental role in establishing an immunotolerogenic microenvironment in the intestinal tract remains obscure. Here, we demonstrate that an understudied murine commensal bacterium, Dubosiella newyorkensis, and its human homologue Clostridium innocuum, have a probiotic immunomodulatory effect on dextran sulfate sodium-induced colitis using conventional, antibiotic-treated and germ-free mouse models. We identify an important role for the D. newyorkensis in rebalancing Treg/Th17 responses and ameliorating mucosal barrier injury by producing short-chain fatty acids, especially propionate and L-Lysine (Lys). We further show that Lys induces the immune tolerance ability of dendritic cells (DCs) by enhancing Trp catabolism towards the kynurenine (Kyn) pathway through activation of the metabolic enzyme indoleamine-2,3-dioxygenase 1 (IDO1) in an aryl hydrocarbon receptor (AhR)-dependent manner. This study identifies a previously unrecognized metabolic communication by which Lys-producing commensal bacteria exert their immunoregulatory capacity to establish a Treg-mediated immunosuppressive microenvironment by activating AhR-IDO1-Kyn metabolic circuitry in DCs. This metabolic circuit represents a potential therapeutic target for the treatment of inflammatory bowel diseases.
    DOI:  https://doi.org/10.1038/s41467-024-45636-x
  8. Clin Immunol. 2024 Feb 14. pii: S1521-6616(24)00051-2. [Epub ahead of print] 109940
      As the aging population increases, the focus on elderly patients with acute respiratory distress syndrome (ARDS) is also increasing. In this article, we found progranulin (PGRN) differential expression in ARDS patients and healthy controls, even in young and old ARDS patients. Its expression strongly correlates with several cytokines in both young and elderly ARDS patients. PGRN has comparable therapeutic effects in young and elderly mice with lipopolysaccharide-induced acute lung injury, manifesting as lung injury, apoptosis, inflammation, and regulatory T cells (Tregs) differentiation. Considering that Tregs differentiation relies on metabolic reprogramming, we discovered that Tregs differentiation was mediated by mitochondrial function, especially in the aged population. Furthermore, we demonstrated that PGRN alleviated the mitochondrial damage during Tregs differentiation through the AMPK/PGC-1α pathway in T cells. Collectively, PGRN may regulate mitochondria function to promote Tregs differentiation through the AMPK/PGC-1α pathway to improve ARDS.
    Keywords:  Acute respiratory distress syndrome (ARDS); Immunosenescence; Metabolic reprogramming; Mitochondria; Progranulin (PGRN); Regulatory T cells (Tregs)
    DOI:  https://doi.org/10.1016/j.clim.2024.109940
  9. bioRxiv. 2024 Feb 02. pii: 2024.01.31.578284. [Epub ahead of print]
      The adaptive T cell response is accompanied by continuous rewiring of the T cell's electric and metabolic state. Ion channels and nutrient transporters integrate bioelectric and biochemical signals from the environment, setting cellular electric and metabolic states. Divergent electric and metabolic states contribute to T cell immunity or tolerance. Here, we report that neuritin (Nrn1) contributes to tolerance development by modulating regulatory and effector T cell function. Nrn1 expression in regulatory T cells promotes its expansion and suppression function, while expression in the T effector cell dampens its inflammatory response. Nrn1 deficiency causes dysregulation of ion channel and nutrient transporter expression in Treg and effector T cells, resulting in divergent metabolic outcomes and impacting autoimmune disease progression and recovery. These findings identify a novel immune function of the neurotrophic factor Nrn1 in regulating the T cell metabolic state in a cell context-dependent manner and modulating the outcome of an immune response.
    DOI:  https://doi.org/10.1101/2024.01.31.578284
  10. J Immunol. 2024 Feb 16. pii: ji2300599. [Epub ahead of print]
      As an immune checkpoint, cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) suppresses the activation, proliferation, and effector function of T cells, thus preventing an overexuberant response and maintaining immune homeostasis. However, whether and how this immune checkpoint functions in early vertebrates remains unknown. In the current study, using a Nile tilapia (Oreochromis niloticus) model, we investigated the suppression of T cell response by CTLA-4 in bony fish. Tilapia CTLA-4 is constitutively expressed in lymphoid tissues, and its mRNA and protein expression in lymphocytes are upregulated following PHA stimulation or Edwardsiella piscicida infection. Blockade of CTLA-4 signaling enhanced T cell activation and proliferation but inhibited activation-induced T cell apoptosis, indicating that CTLA-4 negatively regulated T cell activation. In addition, blocking CTLA-4 signaling in vivo increased the differentiation potential and cytotoxicity of T cells, resulting in an enhanced T cell response during E. piscicida infection. Tilapia CTLA-4 competitively bound the B7.2/CD86 molecule with CD28, thus antagonizing the CD28-mediated costimulatory signal of T cell activation. Furthermore, inhibition of mammalian/mechanistic target of rapamycin complex 1 (mTORC1) signaling, c-Myc, or glycolysis markedly impaired the CTLA-4 blockade-enhanced T cell response, suggesting that CTLA-4 suppressed the T cell response of tilapia by inhibiting mTORC1/c-Myc axis-controlled glycolysis. Overall, the findings indicate a detailed mechanism by which CTLA-4 suppresses T cell immunity in tilapia; therefore, we propose that early vertebrates have evolved sophisticated mechanisms coupling immune checkpoints and metabolic reprogramming to avoid an overexuberant T cell response.
    DOI:  https://doi.org/10.4049/jimmunol.2300599
  11. Cell Death Dis. 2024 Feb 15. 15(2): 145
      Cancer cells develop multiple strategies to evade T cell-mediated killing. On one hand, cancer cells may preferentially rely on certain amino acids for rapid growth and metastasis. On the other hand, sufficient nutrient availability and uptake are necessary for mounting an effective T cell anti-tumor response in the tumor microenvironment (TME). Here we demonstrate that tumor cells outcompete T cells for cystine uptake due to high Slc7a11 expression. This competition induces T-cell exhaustion and ferroptosis, characterized by diminished memory formation and cytokine secretion, increased PD-1 and TIM-3 expression, as well as intracellular oxidative stress and lipid-peroxide accumulation. Importantly, either Slc7a11 deletion in tumor cells or intratumoral cystine supplementation improves T cell anti-tumor immunity. Mechanistically, cystine deprivation in T cells disrupts glutathione synthesis, but promotes CD36 mediated lipid uptake due to dysregulated cystine/glutamate exchange. Moreover, enforced expression of glutamate-cysteine ligase catalytic subunit (Gclc) promotes glutathione synthesis and prevents CD36 upregulation, thus boosting T cell anti-tumor immunity. Our findings reveal cystine as an intracellular metabolic checkpoint that orchestrates T-cell survival and differentiation, and highlight Gclc as a potential therapeutic target for enhancing T cell anti-tumor function.
    DOI:  https://doi.org/10.1038/s41419-024-06503-1
  12. Cancer Immunol Immunother. 2024 Feb 13. 73(3): 52
      INTRODUCTION: As one of the major components of the tumor microenvironment, tumor-associated macrophages (TAMs) possess profound inhibitory activity against T cells and facilitate tumor escape from immune checkpoint blockade therapy. Converting this pro-tumorigenic toward the anti-tumorigenic phenotype thus is an important strategy for enhancing adaptive immunity against cancer. However, a plethora of mechanisms have been described for pro-tumorigenic differentiation in cancer, metabolic switches to program the anti-tumorigenic property of TAMs are elusive.MATERIALS AND METHODS: From an unbiased analysis of single-cell transcriptome data from multiple tumor models, we discovered that anti-tumorigenic TAMs uniquely express elevated levels of a specific fatty acid receptor, G-protein-coupled receptor 84 (GPR84). Genetic ablation of GPR84 in mice leads to impaired pro-inflammatory polarization of macrophages, while enhancing their anti-inflammatory phenotype. By contrast, GPR84 activation by its agonist, 6-n-octylaminouracil (6-OAU), potentiates pro-inflammatory phenotype via the enhanced STAT1 pathway. Moreover, 6-OAU treatment significantly retards tumor growth and increases the anti-tumor efficacy of anti-PD-1 therapy.
    CONCLUSION: Overall, we report a previously unappreciated fatty acid receptor, GPR84, that serves as an important metabolic sensing switch for orchestrating anti-tumorigenic macrophage polarization. Pharmacological agonists of GPR84 hold promise to reshape and reverse the immunosuppressive TME, and thereby restore responsiveness of cancer to overcome resistance to immune checkpoint blockade.
    Keywords:  Cancer immunotherapy; Immunometabolsim; Tumor-associated macrophage
    DOI:  https://doi.org/10.1007/s00262-023-03603-3
  13. Nat Commun. 2024 Feb 16. 15(1): 1442
      Kaposi's sarcoma-associated herpesvirus (KSHV) is the causative agent of Kaposi's sarcoma (KS) and multiple types of B cell malignancies. Emerging evidence demonstrates that KSHV reprograms host-cell central carbon metabolic pathways, which contributes to viral persistence and tumorigenesis. However, the mechanisms underlying KSHV-mediated metabolic reprogramming remain poorly understood. Carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (CAD) is a key enzyme of the de novo pyrimidine synthesis, and was recently identified to deamidate the NF-κB subunit RelA to promote aerobic glycolysis and cell proliferation. Here we report that KSHV infection exploits CAD for nucleotide synthesis and glycolysis. Mechanistically, KSHV vCyclin binds to and hijacks cyclin-dependent kinase CDK6 to phosphorylate Ser-1900 on CAD, thereby activating CAD-mediated pyrimidine synthesis and RelA-deamidation-mediated glycolytic reprogramming. Correspondingly, genetic depletion or pharmacological inhibition of CDK6 and CAD potently impeded KSHV lytic replication and thwarted tumorigenesis of primary effusion lymphoma (PEL) cells in vitro and in vivo. Altogether, our work defines a viral metabolic reprogramming mechanism underpinning KSHV oncogenesis, which may spur the development of new strategies to treat KSHV-associated malignancies and other diseases.
    DOI:  https://doi.org/10.1038/s41467-024-45852-5
  14. Gut Microbes. 2024 Jan-Dec;16(1):16(1): 2316932
      Mitochondrial dynamics are critical in cellular energy production, metabolism, apoptosis, and immune responses. Pathogenic bacteria have evolved sophisticated mechanisms to manipulate host cells' mitochondrial functions, facilitating their proliferation and dissemination. Salmonella enterica serovar Typhimurium (S. Tm), an intracellular foodborne pathogen, causes diarrhea and exploits host macrophages for survival and replication. However, S. Tm-associated mitochondrial dynamics during macrophage infection remain poorly understood. In this study, we showed that within macrophages, S. Tm remodeled mitochondrial fragmentation to facilitate intracellular proliferation mediated by Salmonella invasion protein A (SipA), a type III secretion system effector encoded by Salmonella pathogenicity island 1. SipA directly targeted mitochondria via its N-terminal mitochondrial targeting sequence, preventing excessive fragmentation and the associated increase in mitochondrial reactive oxygen species, loss of mitochondrial membrane potential, and release of mitochondrial DNA and cytochrome c into the cytosol. Macrophage replication assays and animal experiments showed that mitochondria and SipA interact to facilitate intracellular replication and pathogenicity of S. Tm. Furthermore, we showed that SipA delayed mitochondrial fragmentation by indirectly inhibiting the recruitment of cytosolic dynamin-related protein 1, which mediates mitochondrial fragmentation. This study revealed a novel mechanism through which S. Tm manipulates host mitochondrial dynamics, providing insights into the molecular interplay that facilitates S. Tm adaptation within host macrophages.
    Keywords:  Effectors; SipA; mitochondrial fragmentation; pathogenicity; salmonella typhimurium
    DOI:  https://doi.org/10.1080/19490976.2024.2316932
  15. Clin Transl Allergy. 2024 Feb;14(2): e12339
      BACKGROUND: Allergic diseases, including respiratory and food allergies, as well as allergic skin conditions have surged in prevalence in recent decades. In allergic diseases, the gut microbiome is dysbiotic, with reduced diversity of beneficial bacteria and increased abundance of potential pathogens. Research findings suggest that the microbiome, which is highly influenced by environmental and dietary factors, plays a central role in the development, progression, and severity of allergic diseases. The microbiome generates metabolites, which can regulate many of the host's cellular metabolic processes and host immune responses.AIMS AND METHODS: Our goal is to provide a narrative and comprehensive literature review of the mechanisms through which microbial metabolites regulate host immune function and immune metabolism both in homeostasis and in the context of allergic diseases.
    RESULTS AND DISCUSSION: We describe key microbial metabolites such as short-chain fatty acids, amino acids, bile acids and polyamines, elucidating their mechanisms of action, cellular targets and their roles in regulating metabolism within innate and adaptive immune cells. Furthermore, we characterize the role of bacterial metabolites in the pathogenesis of allergic diseases including allergic asthma, atopic dermatitis and food allergy.
    CONCLUSION: Future research efforts should focus on investigating the physiological functions of microbiota-derived metabolites to help develop new diagnostic and therapeutic interventions for allergic diseases.
    Keywords:  allergy; immune metabolism; immune response; microbial metabolites; microbiome
    DOI:  https://doi.org/10.1002/clt2.12339
  16. Nat Immunol. 2024 Feb 14.
      Visceral adipose tissue (VAT) is an energy store and endocrine organ critical for metabolic homeostasis. Regulatory T (Treg) cells restrain inflammation to preserve VAT homeostasis and glucose tolerance. Here, we show that the VAT harbors two distinct Treg cell populations: prototypical serum stimulation 2-positive (ST2+) Treg cells that are enriched in males and a previously uncharacterized population of C-X-C motif chemokine receptor 3-positive (CXCR3+) Treg cells that are enriched in females. We show that the transcription factors GATA-binding protein 3 and peroxisome proliferator-activated receptor-γ, together with the cytokine interleukin-33, promote the differentiation of ST2+ VAT Treg cells but repress CXCR3+ Treg cells. Conversely, the differentiation of CXCR3+ Treg cells is mediated by the cytokine interferon-γ and the transcription factor T-bet, which also antagonize ST2+ Treg cells. Finally, we demonstrate that ST2+ Treg cells preserve glucose homeostasis, whereas CXCR3+ Treg cells restrain inflammation in lean VAT and prevent glucose intolerance under high-fat diet conditions. Overall, this study defines two molecularly and developmentally distinct VAT Treg cell types with unique context- and sex-specific functions.
    DOI:  https://doi.org/10.1038/s41590-024-01753-9
  17. Cell Metab. 2024 Feb 08. pii: S1550-4131(24)00012-3. [Epub ahead of print]
      Immunomodulatory effects of long-chain fatty acids (LCFAs) and their activating enzyme, acyl-coenzyme A (CoA) synthetase long-chain family (ACSL), in the tumor microenvironment remain largely unknown. Here, we find that ACSL5 functions as an immune-dependent tumor suppressor. ACSL5 expression sensitizes tumors to PD-1 blockade therapy in vivo and the cytotoxicity mediated by CD8+ T cells in vitro via regulation of major histocompatibility complex class I (MHC-I)-mediated antigen presentation. Through screening potential substrates for ACSL5, we further identify that elaidic acid (EA), a trans LCFA that has long been considered harmful to human health, phenocopies to enhance MHC-I expression. EA supplementation can suppress tumor growth and sensitize PD-1 blockade therapy. Clinically, ACSL5 expression is positively associated with improved survival in patients with lung cancer, and plasma EA level is also predictive for immunotherapy efficiency. Our findings provide a foundation for enhancing immunotherapy through either targeting ACSL5 or metabolic reprogramming of antigen presentation via dietary EA supplementation.
    Keywords:  ACSL5; CD8(+) T cell; MHC class I; NLRC5; antigen presentation; checkpoint blockade; elaidic acid; immunotherapy; long-chain fatty acids
    DOI:  https://doi.org/10.1016/j.cmet.2024.01.012
  18. Proc Natl Acad Sci U S A. 2024 Feb 20. 121(8): e2315190121
      Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion transporter required for epithelial homeostasis in the lung and other organs, with CFTR mutations leading to the autosomal recessive genetic disease CF. Apart from excessive mucus accumulation and dysregulated inflammation in the airways, people with CF (pwCF) exhibit defective innate immune responses and are susceptible to bacterial respiratory pathogens such as Pseudomonas aeruginosa. Here, we investigated the role of CFTR in macrophage antimicrobial responses, including the zinc toxicity response that is used by these innate immune cells against intracellular bacteria. Using both pharmacological approaches, as well as cells derived from pwCF, we show that CFTR is required for uptake and clearance of pathogenic Escherichia coli by CSF-1-derived primary human macrophages. CFTR was also required for E. coli-induced zinc accumulation and zinc vesicle formation in these cells, and E. coli residing in macrophages exhibited reduced zinc stress in the absence of CFTR function. Accordingly, CFTR was essential for reducing the intramacrophage survival of a zinc-sensitive E. coli mutant compared to wild-type E. coli. Ectopic expression of the zinc transporter SLC30A1 or treatment with exogenous zinc was sufficient to restore antimicrobial responses against E. coli in human macrophages. Zinc supplementation also restored bacterial killing in GM-CSF-derived primary human macrophages responding to P. aeruginosa, used as an in vitro macrophage model relevant to CF. Thus, restoration of the zinc toxicity response could be pursued as a therapeutic strategy to restore innate immune function and effective host defense in pwCF.
    Keywords:  CFTR; antimicrobial response; cystic fibrosis; macrophages; zinc
    DOI:  https://doi.org/10.1073/pnas.2315190121
  19. Nat Cardiovasc Res. 2023 Jun 26. 2(7): 656-672
      The immune system is integral to cardiovascular health and disease. Targeting inflammation ameliorates adverse cardiovascular outcomes. Atherosclerosis, a major underlying cause of cardiovascular disease (CVD), is conceptualised as a lipid-driven inflammation where macrophages play a non-redundant role. However, evidence emerging so far from single cell atlases suggests a dichotomy between lipid associated and inflammatory macrophage states. Here, we present an inclusive reference atlas of human intraplaque immune cell communities. Combining scRNASeq of human surgical carotid endarterectomies in a discovery cohort with bulk RNASeq and immunohistochemistry in a validation cohort (the Carotid Plaque Imaging Project-CPIP), we reveal the existence of PLIN2hi/TREM1hi macrophages as a toll-like receptor-dependent inflammatory lipid-associated macrophage state linked to cerebrovascular events. Our study shifts the current paradigm of lipid-driven inflammation by providing biological evidence for a pathogenic macrophage transition to an inflammatory lipid-associated phenotype and for its targeting as a new treatment strategy for CVD.
    Keywords:  Atherosclerosis; Cardiovascular Disease; Inflammation; Lipid-associated macrophages; Mechanisms
    DOI:  https://doi.org/10.1038/s44161-023-00295-x
  20. Sci Adv. 2024 Feb 16. 10(7): eadh8478
      The first definitive hematopoietic progenitors emerge through the process of endothelial-to-hematopoietic transition in vertebrate embryos. With molecular regulators for this process worked out, the role of metabolic pathways used remains unclear. Here, we performed nano-LC-MS/MS-based proteomic analysis and predicted a metabolic switch from a glycolytic to oxidative state upon hematopoietic transition. Mitochondrial activity, glucose uptake, and glycolytic flux analysis supported this hypothesis. Systemic inhibition of lactate dehydrogenase A (LDHA) increased oxygen consumption rate in the hemato-endothelial system and inhibited the emergence of intra-aortic hematopoietic clusters. These findings were corroborated using Tie2-Cre-mediated deletion of Ldha that showed similar effects on hematopoietic emergence. Conversely, stabilization of HIF-1α via inhibition of oxygen-sensing pathway led to decreased oxidative flux and promoted hematopoietic emergence in mid-gestation embryos. Thus, cell-intrinsic regulation of metabolic state overrides oxygenated microenvironment in the aorta to promote a glycolytic metabolic state that is crucial for hematopoietic emergence in mammalian embryos.
    DOI:  https://doi.org/10.1126/sciadv.adh8478
  21. iScience. 2024 Mar 15. 27(3): 109030
      Fungal β-glucans are major drivers of trained immunity which increases long-term protection against secondary infections. Heterogeneity in β-glucan source, structure, and solubility alters interaction with the phagocytic receptor Dectin-1 and could impact strategies to improve trained immunity in humans. Using a panel of diverse β-glucans, we describe the ability of a specific yeast-derived whole-glucan particle (WGP) to reprogram metabolism and thereby drive trained immunity in human monocyte-derived macrophages in vitro and mice bone marrow in vivo. Presentation of pure, non-soluble, non-aggregated WGPs led to the formation of the Dectin-1 phagocytic synapse with subsequent lysosomal mTOR activation, metabolic reprogramming, and epigenetic rewiring. Intraperitoneal or oral administration of WGP drove bone marrow myelopoiesis and improved mature macrophage responses, pointing to therapeutic and food-based strategies to drive trained immunity. Thus, the investment of a cell in a trained response relies on specific recognition of β-glucans presented on intact microbial particles through stimulation of the Dectin-1 phagocytic response.
    Keywords:  Immunology; Molecular biology; Physiology
    DOI:  https://doi.org/10.1016/j.isci.2024.109030