bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2023–09–24
38 papers selected by
Dylan Ryan, University of Cambridge



  1. Sci Immunol. 2023 Sep 29. 8(87): eadf7579
      Mitophagy, a central process guarding mitochondrial quality, is commonly impaired in human diseases such as Parkinson's disease, but its impact in adaptive immunity remains unclear. The differentiation and survival of memory CD8+ T cells rely on oxidative metabolism, a process that requires robust mitochondrial quality control. Here, we found that Parkinson's disease patients have a reduced frequency of CD8+ memory T cells compared with healthy donors and failed to form memory T cells upon vaccination against COVID-19, highlighting the importance of mitochondrial quality control for memory CD8+ T cell formation. We further uncovered that regulators of mitophagy, including Parkin and NIX, were up-regulated in response to interleukin-15 (IL-15) for supporting memory T cell formation. Mechanistically, Parkin suppressed VDAC1-dependent apoptosis in memory T cells. In contrast, NIX expression in T cells counteracted ferroptosis by preventing metabolic dysfunction resulting from impaired mitophagy. Together, our results indicate that the mitophagy machinery orchestrates survival and metabolic dynamics required for memory T cell formation, as well as highlight a deficit in T cell-mediated antiviral responses in Parkinson's disease patients.
    DOI:  https://doi.org/10.1126/sciimmunol.adf7579
  2. Cancer Discov. 2023 Sep 20.
      The tumor microenvironment (TME) restricts anti-tumor CD8+ T cell function and immunotherapy responses. Cancer cells compromise metabolic fitness of CD8+ T cells within the TME, but the mechanisms are largely unknown. Here we demonstrate one carbon (1C) metabolism is enhanced in T cells in an antigen-specific manner. Therapeutic supplementation of 1C metabolism using formate enhances CD8+ T cell fitness and anti-tumor efficacy of PD-1 blockade in B16-OVA tumors. Formate supplementation drives transcriptional alterations in CD8+ T cell metabolism and increases gene signatures for cellular proliferation and activation. Combined formate and anti-PD-1 therapy increases tumor-infiltrating CD8+ T cells, which are essential for the enhanced tumor control. Our data demonstrate formate provides metabolic support to CD8+ T cells reinvigorated by anti-PD-1 to overcome a metabolic vulnerability in 1C metabolism in the TME to further improve T cell function.
    DOI:  https://doi.org/10.1158/2159-8290.CD-22-1301
  3. Nature. 2023 Sep 20.
      Protective immunity against pathogens or cancer is mediated by the activation and clonal expansion of antigen-specific naive T cells into effector T cells. To sustain their rapid proliferation and effector functions, naive T cells switch their quiescent metabolism to an anabolic metabolism through increased levels of aerobic glycolysis, but also through mitochondrial metabolism and oxidative phosphorylation, generating energy and signalling molecules1-3. However, how that metabolic rewiring drives and defines the differentiation of T cells remains unclear. Here we show that proliferating effector CD8+ T cells reductively carboxylate glutamine through the mitochondrial enzyme isocitrate dehydrogenase 2 (IDH2). Notably, deletion of the gene encoding IDH2 does not impair the proliferation of T cells nor their effector function, but promotes the differentiation of memory CD8+ T cells. Accordingly, inhibiting IDH2 during ex vivo manufacturing of chimeric antigen receptor (CAR) T cells induces features of memory T cells and enhances antitumour activity in melanoma, leukaemia and multiple myeloma. Mechanistically, inhibition of IDH2 activates compensating metabolic pathways that cause a disequilibrium in metabolites regulating histone-modifying enzymes, and this maintains chromatin accessibility at genes that are required for the differentiation of memory T cells. These findings show that reductive carboxylation in CD8+ T cells is dispensable for their effector response and proliferation, but that it mainly produces a pattern of metabolites that epigenetically locks CD8+ T cells into a terminal effector differentiation program. Blocking this metabolic route allows the increased formation of memory T cells, which could be exploited to optimize the therapeutic efficacy of CAR T cells.
    DOI:  https://doi.org/10.1038/s41586-023-06546-y
  4. Nat Cancer. 2023 Sep 18.
      Acetate metabolism is an important metabolic pathway in many cancers and is controlled by acetyl-CoA synthetase 2 (ACSS2), an enzyme that catalyzes the conversion of acetate to acetyl-CoA. While the metabolic role of ACSS2 in cancer is well described, the consequences of blocking tumor acetate metabolism on the tumor microenvironment and antitumor immunity are unknown. We demonstrate that blocking ACSS2, switches cancer cells from acetate consumers to producers of acetate thereby freeing acetate for tumor-infiltrating lymphocytes to use as a fuel source. We show that acetate supplementation metabolically bolsters T-cell effector functions and proliferation. Targeting ACSS2 with CRISPR-Cas9 guides or a small-molecule inhibitor promotes an antitumor immune response and enhances the efficacy of chemotherapy in preclinical breast cancer models. We propose a paradigm for targeting acetate metabolism in cancer in which inhibition of ACSS2 dually acts to impair tumor cell metabolism and potentiate antitumor immunity.
    DOI:  https://doi.org/10.1038/s43018-023-00636-6
  5. Cell Chem Biol. 2023 Aug 31. pii: S2451-9456(23)00280-5. [Epub ahead of print]
      Mitochondrial biogenesis initiates within hours of T cell receptor (TCR) engagement and is critical for T cell activation, function, and survival; yet, how metabolic programs support mitochondrial biogenesis during TCR signaling is not fully understood. Here, we performed a multiplexed metabolic chemical screen in CD4+ T lymphocytes to identify modulators of metabolism that impact mitochondrial mass during early T cell activation. Treatment of T cells with pyrvinium pamoate early during their activation blocks an increase in mitochondrial mass and results in reduced proliferation, skewed CD4+ T cell differentiation, and reduced cytokine production. Furthermore, administration of pyrvinium pamoate at the time of induction of experimental autoimmune encephalomyelitis, an experimental model of multiple sclerosis in mice, prevented the onset of clinical disease. Thus, modulation of mitochondrial biogenesis may provide a therapeutic strategy for modulating T cell immune responses.
    Keywords:  CD4(+) T cells; T cell differentiation; high-throughput metabolic screen; mitochondrial biogenesis; pyruvate oxidation; pyrvinium pamoate
    DOI:  https://doi.org/10.1016/j.chembiol.2023.08.008
  6. J Exp Clin Cancer Res. 2023 Sep 23. 42(1): 245
      Macrophages are highly plastic in different tissues and can differentiate into functional subpopulations under different stimuli. Tumor-associated macrophages (TAMs) are one of the most important innate immune cells implicated in the establishment of an immunosuppressive tumor microenvironment (TME). Recent evidence pinpoints the critical role of metabolic reprogramming in dictating pro-tumorigenic functions of TAMs. Both tumor cells and macrophages undergo metabolic reprogramming to meet energy demands in the TME. Understanding the metabolic rewiring in TAMs can shed light on immune escape mechanisms and provide insights into repolarizing TAMs towards anti-tumorigenic function. Here, we discuss how metabolism impinges on the functional divergence of macrophages and its relevance to macrophage polarization in the TME.
    Keywords:  Metabolic reprogramming; Polarization; Signaling pathways; TAMs; TME
    DOI:  https://doi.org/10.1186/s13046-023-02832-9
  7. Pharmacol Res. 2023 Sep 15. pii: S1043-6618(23)00285-2. [Epub ahead of print]196 106929
      Severe asthma is a difficult-to-treat chronic airway inflammatory disease requiring systemic corticosteroids to achieve asthma control. It has recently been shown that drugs targeting immunometabolism have elicited anti-inflammatory effects. The purpose of this study was to investigate potential immunometabolic modulatory actions of systemic dexamethasone (Dex) in an Aspergillus fumigatus (Af)-induced severe asthma model. Mice were repeatedly exposed to the Af aeroallergen before systemic treatment with Dex. Simultaneous measurements of airway inflammation, real-time glycolytic and oxidative phosphorylation (OXPHOS) activities, expression levels of key metabolic enzymes, and amounts of metabolites were studied in lung tissues, and in primary alveolar macrophages (AMs) and eosinophils. Dex markedly reduced Af-induced eosinophilic airway inflammation, which was coupled with an overall reduction in lung glycolysis, glutaminolysis, and fatty acid synthesis. The anti-inflammatory effects of Dex may stem from its immunometabolic actions by downregulating key metabolic enzymes including pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase. Substantial suppression of eosinophilic airway inflammation by Dex coincided with a specific escalation of mitochondrial proton leak in primary lung eosinophils. Besides, while our findings confirmed that inflammation corresponds with an upregulation of glycolysis, it was accompanied with an unexpectedly stable or elevated OXPHOS in the lungs and activated immune cells, respectively. Our findings reveal that the anti-inflammatory effects of Dex in severe asthma are associated with downregulation of pyruvate dehydrogenase kinase, glutaminase, and fatty acid synthase, and the augmentation of mitochondrial proton leak in lung eosinophils. These enzymes and biological processes may be valuable targets for therapeutic interventions against severe asthma.
    Keywords:  Alveolar macrophages; Corticosteroid; Eosinophils; Inflammation; Metabolic reprogramming
    DOI:  https://doi.org/10.1016/j.phrs.2023.106929
  8. Cell Chem Biol. 2023 Sep 21. pii: S2451-9456(23)00248-9. [Epub ahead of print]30(9): 1009-1011
      T cells play a key role in driving autoimmunity, with alterations in metabolism powering their effector function. In the July 11 issue of Cell Metabolism, Jenkins et al.1 describe how a type 2 diabetes drug, canagliflozin, can be repurposed for the treatment of autoimmune disorders through metabolic reprogramming of the T cell response.
    DOI:  https://doi.org/10.1016/j.chembiol.2023.07.020
  9. Front Med. 2023 Sep 19.
      Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
    Keywords:  immune cell; immune checkpoint inhibitor; immunometabolism; immunotherapy; metabolic reprogramming; resistance; tumor microenvironment
    DOI:  https://doi.org/10.1007/s11684-023-1012-z
  10. Biomed Pharmacother. 2023 Sep 15. pii: S0753-3322(23)01319-7. [Epub ahead of print]167 115521
      Neuroinflammation triggers the production of inflammatory factors, influences neuron generation and synaptic plasticity, thus playing an important role in the pathogenesis of depression and becoming an important direction of depression prevention and treatment. Itaconate is a metabolite secreted by macrophages in immunomodulatory responses, that has potent immunomodulatory effects and has been proven to exert anti-inflammatory effects in a variety of diseases. Microglia are mononuclear macrophages that reside in the central nervous system (CNS), and may be the source of endogenous itaconate in the brain. Itaconate can directly inhibit succinate dehydrogenase (SDH), reduce the production of NOD-like receptor thermal protein domain associated protein 3 (NLRP3), activate nuclear factor erythroid-2 related factor 2 (Nrf2), and block glycolysis, and thereby improving the depressive symptoms associated with the above mechanisms. Notably, itaconate also indirectly ameliorates the depressive symptoms associated with some inflammatory diseases. With the optimization of the structure and the development of new delivery systems, the application value and therapeutic potential of itaconate have been significantly improved. Dimethyl itaconate (DI) and 4-octyl itaconate (4-OI), cell-permeable derivatives of itaconate, are more suitable for crossing the blood-brain barrier (BBB), exhibiting therapeutic effects in the research of multiple diseases. This article provides an overview of the immunomodulatory effects of itaconate and its potential therapeutic efficacy in inflammatory depression, focusing on the promising application of itaconate as a precursor of antidepressants.
    Keywords:  Depression; Itaconate; Macrophage; Microglia; Neuroinflammation
    DOI:  https://doi.org/10.1016/j.biopha.2023.115521
  11. Trends Cell Biol. 2023 Sep 16. pii: S0962-8924(23)00166-6. [Epub ahead of print]
      Polyamines - putrescine, spermidine, and spermine - are widely distributed aliphatic compounds known to regulate important biological processes in prokaryotic and eukaryotic cells. Therefore, spermidine insufficiency is associated with various physio-pathological processes, such as aging and cancers. Recent advances in immuno-metabolism and immunotherapy shed new light on the role of spermidine in immune cell regulation and anticancer responses. Here, we review novel works demonstrating that spermidine is produced by collective metabolic pathways of gut bacteria, bacteria-host co-metabolism, and by the host cells, including activated immune cells. We highlight the effectiveness of spermidine in enhancing antitumor responses in aged animals otherwise nonresponsive to immune checkpoint therapy and propose that spermidine supplementation could be used to enhance the efficacy of anti-PD-1 treatment.
    Keywords:  antitumor immunity; collective metabolic pathways; fatty acid oxidation; immuno-metabolites; mitochondria; spermidine
    DOI:  https://doi.org/10.1016/j.tcb.2023.08.002
  12. Amino Acids. 2023 Sep 19.
      Amino acid metabolic profile, particularly its association with clinical characteristics, remains unclear in patients with human immunodeficiency virus (HIV) infection and acquired immune deficiency syndrome (AIDS) combined with metabolic disorders. In this study, we performed targeted metabolomic analyses on 64 patients with HIV/AIDS and 21 healthy controls. Twenty-four amino acids and selected intermediate metabolites in the serum were quantitatively detected using high-performance liquid chromatography-tandem mass spectrometry, and characteristic changes and metabolic pathways were analyzed in HIV-infected patients with different degrees of abnormal glucose and lipid metabolism. Spearman's partial correlation was used to analyze the association between amino acids, biochemical parameters, and inflammatory cytokines. The results showed that the main metabolic pathways of the eighteen differential metabolites involved were arginine biosynthesis and metabolism, methionine cycle, and tryptophan metabolism. Fourteen differential amino acid metabolites were positively correlated with nine inflammatory cytokines, including TNF-α, C-reactive protein, IL-1β, and galectin-3 (FDR < 0.1). Kynurenine, ornithine, and homocysteine were positively correlated with fasting blood glucose and insulin resistance index (FDR < 0.1). Our study revealed a multi-pathway imbalance in amino acid metabolism in patients with HIV/AIDS, which was significantly correlated with inflammation and insulin resistance.
    Keywords:  Amino acids; Glucose and lipid metabolism; HIV; Inflammation; Insulin resistance; Targeted metabolomics
    DOI:  https://doi.org/10.1007/s00726-023-03325-x
  13. Nat Commun. 2023 09 18. 14(1): 5778
      The pro-inflammatory state of macrophages, underpinned by their metabolic condition, is essentially affecting their capacity of combating tumor cells. Here we find, via a pooled metabolic gene knockout CRISPR screen that KEAP1 and ACOD1 are strong regulators of the pro-inflammatory state in macrophages. We show that ACOD1 knockout macrophages, generated in our induced pluripotent stem cell-derived CAR-macrophage (CAR-iMAC) platform, are strongly and persistently polarized toward the pro-inflammatory state, which manifests in increased reactive oxygen species (ROS) production, more potent phagocytosis and enhanced cytotoxic functions against cancer cells in vitro. In ovarian or pancreatic cancer mouse models, ACOD1-depleted CAR-iMACs exhibit enhanced capacity in repressing tumors, leading to increased survival. In addition, combining ACOD1-depleted CAR-iMACs with immune checkpoint inhibitors (ICI), such as anti-CD47 or anti-PD1 antibodies, result in even stronger tumor suppressing effect. Mechanistically, the depletion of ACOD1 reduces levels of the immuno-metabolite itaconate, allowing KEAP1 to prevent NRF2 from entering the nucleus to activate an anti-inflammatory program. This study thus lays down the proof of principle for targeting ACOD1 in myeloid cells for cancer immunotherapy and introduces metabolically engineered human iPSC-derived CAR-iMACs cells with enhanced polarization and anti-tumor functions in adoptive cell transfer therapies.
    DOI:  https://doi.org/10.1038/s41467-023-41470-9
  14. Sci Rep. 2023 Sep 20. 13(1): 15539
      Chronic neuroinflammation is implicated in the pathogenesis of Parkinson's disease (PD), one of the most common neurodegenerative diseases. Itaconate, an endogenous metabolite derived from the tricarboxylic acid cycle via immune-responsive gene 1 activity, may mediate anti-inflammatory responses by activation of the nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway. This study investigates the neuroprotective potential of 4-octyl itaconate (OI), a cell-permeable derivative of itaconate, in cellular models of PD. OI not only suppressed lipopolysaccharide-induced proinflammatory cascades of inducible nitric oxide synthase, cyclooxygenase-2, and cytokines release in mouse BV2 microglial cells but also activated the Nrf2 signaling pathway and its downstream targets in these cells. Conditioned medium derived from OI-treated BV2 cells protected against rotenone- and MPP+-induced neurotoxicity in Neuro 2A cells. Overall, our findings support the anti-inflammatory neuroprotective potential of OI in PD.
    DOI:  https://doi.org/10.1038/s41598-023-42813-8
  15. Cell Rep Med. 2023 09 19. pii: S2666-3791(23)00316-6. [Epub ahead of print]4(9): 101163
      Metabolic reprogramming of CD4 T cells has become an opportunity for adjunctive therapies. Here, Han et al. show that boosting NAD+ blunts systemic Th17 responses and increases antioxidant pathways through arginine and fumarate-mediated activation of NRF2 transcription factor.
    DOI:  https://doi.org/10.1016/j.xcrm.2023.101163
  16. Eur J Immunol. 2023 Sep 19. e2350536
      Viral infections can result in metabolism rewiring of host cells, which in turn affects the viral lifecycle. Phosphoenolpyruvate (PEP), a metabolic intermediate in the glycolytic pathway, plays important roles in several biological processes including anti-tumor T cell immunity. However, whether PEP might participate in modulating viral infection remains largely unknown. Here, we demonstrate that PEP generally inhibits viral replication via upregulation of AATK expression. Targeted metabolomic analyses shown that intracellular level of PEP was increased upon viral infection. PEP treatment significantly restricted viral infection and hence declined subsequent inflammatory response both in vitro and in vivo. Besides, PEP took inhibitory effect on the stage of viral replication and also decreased the mortality of mice with viral infection. Mechanistically, PEP significantly promoted the expression of apoptosis-associated tyrosine kinase (AATK). Knockdown of AATK led to enhanced viral replication and consequent increased levels of cytokines. Moreover, AATK deficiency disabled the antiviral effect of PEP. Together, our study reveals a previously unknown role of PEP in broadly inhibiting viral replication by promoting AATK expression, highlighting the potential application of activation or upregulation of PEP-AATK axis in controlling viral infections. This article is protected by copyright. All rights reserved.
    Keywords:  viral infection ⋅ phosphoenolpyruvate ⋅ AATK ⋅ cellular metabolism ⋅ inflammation
    DOI:  https://doi.org/10.1002/eji.202350536
  17. Cell Chem Biol. 2023 Sep 21. pii: S2451-9456(23)00284-2. [Epub ahead of print]30(9): 1012-1014
      Metabolic competition within the tumor microenvironment (TME) shapes the efficacy of anticancer immunity. In the August 3rd issue of Nature, Guo et al.1 show that glutamine is an intercellular metabolic checkpoint between cancer and immune cells. Targeting glutamine metabolism in the TME is a promising strategy to improve anti-cancer therapy.
    DOI:  https://doi.org/10.1016/j.chembiol.2023.08.012
  18. Nat Commun. 2023 Sep 22. 14(1): 5923
      Treatment of osteoporosis commonly diminishes osteoclast number which suppresses bone formation thus compromising fracture prevention. Bone formation is not suppressed, however, when bone degradation is reduced by retarding osteoclast functional resorptive capacity, rather than differentiation. We find deletion of deubiquitinase, BRCA1-associated protein 1 (Bap1), in myeloid cells (Bap1∆LysM), arrests osteoclast function but not formation. Bap1∆LysM osteoclasts fail to organize their cytoskeleton which is essential for bone degradation consequently increasing bone mass in both male and female mice. The deubiquitinase activity of BAP1 modifies osteoclast function by metabolic reprogramming. Bap1 deficient osteoclast upregulate the cystine transporter, Slc7a11, by enhanced H2Aub occupancy of its promoter. SLC7A11 controls cellular reactive oxygen species levels and redirects the mitochondrial metabolites away from the tricarboxylic acid cycle, both being necessary for osteoclast function. Thus, in osteoclasts BAP1 appears to regulate the epigenetic-metabolic axis and is a potential target to reduce bone degradation while maintaining osteogenesis in osteoporotic patients.
    DOI:  https://doi.org/10.1038/s41467-023-41629-4
  19. J Cell Biol. 2023 Dec 04. pii: e202303066. [Epub ahead of print]222(12):
      Peroxisomes are organelles involved in many metabolic processes including lipid metabolism, reactive oxygen species (ROS) turnover, and antimicrobial immune responses. However, the cellular mechanisms by which peroxisomes contribute to bacterial elimination in macrophages remain elusive. Here, we investigated peroxisome function in iPSC-derived human macrophages (iPSDM) during infection with Mycobacterium tuberculosis (Mtb). We discovered that Mtb-triggered peroxisome biogenesis requires the ESX-1 type 7 secretion system, critical for cytosolic access. iPSDM lacking peroxisomes were permissive to Mtb wild-type (WT) replication but were able to restrict an Mtb mutant missing functional ESX-1, suggesting a role for peroxisomes in the control of cytosolic but not phagosomal Mtb. Using genetically encoded localization-dependent ROS probes, we found peroxisomes increased ROS levels during Mtb WT infection. Thus, human macrophages respond to the infection by increasing peroxisomes that generate ROS primarily to restrict cytosolic Mtb. Our data uncover a peroxisome-controlled, ROS-mediated mechanism that contributes to the restriction of cytosolic bacteria.
    DOI:  https://doi.org/10.1083/jcb.202303066
  20. Int Immunopharmacol. 2023 Sep 19. pii: S1567-5769(23)01282-1. [Epub ahead of print]124(Pt B): 110957
       BACKGROUND & AIMS: Switching of the macrophage activation phenotype affects the pathogenesis of alcoholic liver diseases, and metabolic reprogramming can provide the energy demand for macrophage phenotypes shift. However, the molecular mechanism by which immune metabolism regulates the activation of proinflammatory macrophages remains unclear.
    APPROACH: Expression of Fgl2 was examined in patients with alcoholic hepatitis and healthy controls. Mice were fed with a Lieber-DeCarli diet. Livers from mice were used to observe liver injury and macrophage activation. Fgl2 overexpressing THP-1 cell was used to find interacting partners through immunoprecipitation plus mass spectrometry. Naive bone marrow derived macrophages stimulated with LPS and ethanol were used for cell experiments.
    RESULTS: Expression of Fgl2 was elevated in macrophages of livers from mice with chronic-binge ethanol feeding or patients with alcoholic hepatitis. Fgl2 depletion ameliorated ethanol diet-induced hepatic steatosis and oxidative injury as well as the levels of proinflammatory cytokines. Fgl2-/- mice exhibited suppressed M1 polarization and glycolysis pathway activation. Fgl2 interacted with the M2 isoform of pyruvate kinase (PKM2) in macrophages and facilitated PKM2 nuclear translocation, thus promoting glycolysis in M1 macrophages and the secretion of proinflammatory cytokines. Furthermore, Fgl2 overexpression in THP-1 cells enhances PKM2-dependent glycolysis and inflammation, which could be reversed by activation of enzymatic PKM2 using DASA58.
    CONCLUSIONS: Taken together, Fgl2 hastens the development of alcoholic liver injury by mediating PKM2 dependent aerobic glycolysis in proinflammatory macrophages. Strategies that inhibiting proinflammatory macrophage activation by silencing Fgl2 might be a potential therapeutic intervention for alcoholic liver injury.
    Keywords:  Aerobic glycolysis; Alcoholic liver injury; Fibrinogen-like protein 2; Inflammation; M2 isoform of pyruvate kinase; Macrophage activation
    DOI:  https://doi.org/10.1016/j.intimp.2023.110957
  21. Mucosal Immunol. 2023 Sep 14. pii: S1933-0219(23)00068-5. [Epub ahead of print]
      This study investigated the role of Alpha-tocopherylquinone (TQ) in regulating the intestinal immune system and the underlying mechanisms. In the experimental dextran sodium sulfate and T cell-mediated colitis models, TQ significantly reduced the mRNA levels of IL-6, IL-1β, IL17A, IL-23, and TNF-α, and the abundance of pro-inflammatory macrophages, Th17 cells and ILC3s in the colons of WT mice. TQ also prevented LPS-induced activation of NFκB and Stat-3 pathway in the human macrophage U937 cells. Pharmacological inhibition or CRISPR-Cas-9-mediated knockout of Aryl hydrocarbon Receptor (AHR) prevented the anti-inflammatory effects of TQ in the LPS-treated U937 cells. Furthermore, TQ reduced the mRNA levels of the LPS-induced proinflammatory cytokines in the WT but not Ahr-/- mice splenocytes. TQ also reduced IL-6R protein levels and IL-6-induced Stat-3 activation in Jurkat cells and in-vitro differentiation of Th17 cells from WT, but not Ahr-/- mice naïve T cells. Additionally, TQ prevented the pro-inflammatory effects of LPS on macrophages and stimulation of T cells in human PBMCs and significantly reduced the abundance of TNF-α, IL-1β, and IL-6hi inflammatory macrophages and Th17 cells in surgically resected Crohn's disease (CD) tissue. Our study shows that TQ is a naturally occurring, non-toxic, and effective immune modulator that activates AhR and suppresses the Stat-3-NFkB signaling.
    Keywords:  D-alpha-tocopheryl quinone; IL-17A/F; IL-6; Th17 cells; aryl hydrocarbon receptor; inflammation; inflammatory bowel disease; macrophages
    DOI:  https://doi.org/10.1016/j.mucimm.2023.09.003
  22. Nat Commun. 2023 09 16. 14(1): 5753
      The aromatic amino acid L-tryptophan (Trp) is essentially metabolized along the host and microbial pathways. While much is known about the role played by downstream metabolites of each pathways in intestinal homeostasis, their role in lung immune homeostasis is underappreciated. Here we have examined the role played by the Trp hydroxylase/5-hydroxytryptamine (5-HT) pathway in calibrating host and microbial Trp metabolism during Aspergillus fumigatus pneumonia. We found that 5-HT produced by mast cells essentially contributed to pathogen clearance and immune homeostasis in infection by promoting the host protective indoleamine-2,3-dioxygenase 1/kynurenine pathway and limiting the microbial activation of the indole/aryl hydrocarbon receptor pathway. This occurred via regulation of lung and intestinal microbiota and signaling pathways. 5-HT was deficient in the sputa of patients with Cystic fibrosis, while 5-HT supplementation restored the dysregulated Trp partitioning in murine disease. These findings suggest that 5-HT, by bridging host-microbiota Trp partitioning, may have clinical effects beyond its mood regulatory function in respiratory pathologies with an inflammatory component.
    DOI:  https://doi.org/10.1038/s41467-023-41536-8
  23. Sci Immunol. 2023 Sep 29. 8(87): eabq2424
      Metabolic fitness of T cells is essential for their vitality, which is largely dependent on the behavior of the mitochondria. The nature of mitochondrial behavior in tumor-infiltrating T cells remains poorly understood. In this study, we show that mitofusin-2 (MFN2) expression is positively correlated with the prognosis of multiple cancers. Genetic ablation of Mfn2 in CD8+ T cells dampens mitochondrial metabolism and function and promotes tumor progression. In tumor-infiltrating CD8+ T cells, MFN2 enhances mitochondria-endoplasmic reticulum (ER) contact by interacting with ER-embedded Ca2+-ATPase SERCA2, facilitating the mitochondrial Ca2+ influx required for efficient mitochondrial metabolism. MFN2 stimulates the ER Ca2+ retrieval activity of SERCA2, thereby preventing excessive mitochondrial Ca2+ accumulation and apoptosis. Elevating mitochondria-ER contact by increasing MFN2 in CD8+ T cells improves the efficacy of cancer immunotherapy. Thus, we reveal a tethering-and-buffering mechanism of organelle cross-talk that regulates the metabolic fitness of tumor-infiltrating CD8+ T cells and highlights the therapeutic potential of enhancing MFN2 expression to optimize T cell function.
    DOI:  https://doi.org/10.1126/sciimmunol.abq2424
  24. Cancer Immunol Immunother. 2023 Sep 21.
      Tumor-infiltrating T cells are promising drug targets to modulate the tumor microenvironment. However, tumor-infiltrating T lymphocytes, as central targets of cancer immunotherapy, show considerable heterogeneity and dynamics across tumor microenvironments and cancer types that may fundamentally influence cancer growth, metastasis, relapse, and response to clinical drugs. The T cell heterogeneity not only refers to the composition of subpopulations but also divergent metabolic states of T cells. Comparing to the diversity of tumor-infiltrating T cell compositions that have been well recognized, the metabolic diversity of T cells deserves more attention for precision immunotherapy. Single-cell sequencing technology enables panoramic stitching of the tumor bulk, partly by showing the metabolic-related gene expression profiles of tumor-infiltrating T cells at a single-cell resolution. Therefore, we here discuss T cell metabolism reprogramming triggered by tumor microenvironment as well as the potential application of metabolic targeting drugs. The tumor-infiltrating T cells metabolic pathway addictions among different cancer types are also addressed in this brief review.
    Keywords:  Cancer metabolism; Single-cell sequencing; T cell metabolism; Tumor microenvironment; Tumor-infiltrating T cell
    DOI:  https://doi.org/10.1007/s00262-023-03540-1
  25. JCI Insight. 2023 Sep 22. pii: e166860. [Epub ahead of print]8(18):
      Lung contusion and gastric aspiration (LC and GA) are major risk factors for developing acute respiratory distress following trauma. Hypoxia from lung injury is mainly regulated by hypoxia-inducible factor 1α (HIF-1α). Published data from our group indicate that HIF-1α regulation in airway epithelial cells (AEC) drives the acute inflammatory response following LC and GA. Metabolomic profiling and metabolic flux of Type II AEC following LC revealed marked increases in glycolytic and TCA intermediates in vivo and in vitro that were HIF-1α dependent. GLUT-1/4 expression was also increased in HIF-1α+/+ mice, suggesting that increased glucose entry may contribute to increased intermediates. Importantly, lactate incubation in vitro on Type II cells did not significantly increase the inflammatory byproduct IL-1β. Contrastingly, succinate had a direct proinflammatory effect on human small AEC by IL-1β generation in vitro. This effect was reversed by dimethylmalonate, suggesting an important role for succinate dehydrogenase in mediating HIF-1α effects. We confirmed the presence of the only known receptor for succinate binding, SUCNR1, on Type II AEC. These results support the hypothesis that succinate drives HIF-1α-mediated airway inflammation following LC. This is the first report to our knowledge of direct proinflammatory activation of succinate in nonimmune cells such as Type II AEC in direct lung injury models.
    Keywords:  Hypoxia; Inflammation; Macrophages; Pulmonology
    DOI:  https://doi.org/10.1172/jci.insight.166860
  26. Nat Cancer. 2023 Sep 18.
      The PDCD1-encoded immune checkpoint receptor PD-1 is a key tumor suppressor in T cells that is recurrently inactivated in T cell non-Hodgkin lymphomas (T-NHLs). The highest frequencies of PDCD1 deletions are detected in advanced disease, predicting inferior prognosis. However, the tumor-suppressive mechanisms of PD-1 signaling remain unknown. Here, using tractable mouse models for T-NHL and primary patient samples, we demonstrate that PD-1 signaling suppresses T cell malignancy by restricting glycolytic energy and acetyl coenzyme A (CoA) production. In addition, PD-1 inactivation enforces ATP citrate lyase (ACLY) activity, which generates extramitochondrial acetyl-CoA for histone acetylation to enable hyperactivity of activating protein 1 (AP-1) transcription factors. Conversely, pharmacological ACLY inhibition impedes aberrant AP-1 signaling in PD-1-deficient T-NHLs and is toxic to these cancers. Our data uncover genotype-specific vulnerabilities in PDCD1-mutated T-NHL and identify PD-1 as regulator of AP-1 activity.
    DOI:  https://doi.org/10.1038/s43018-023-00635-7
  27. Science. 2023 Sep 22. 381(6664): 1287-1288
      Mitochondrial metabolite reduces melanoma growth by boosting antigen presentation.
    DOI:  https://doi.org/10.1126/science.adk1785
  28. J Exp Med. 2023 11 06. pii: e20220681. [Epub ahead of print]220(11):
      Accumulation of lipotoxic lipids, such as free cholesterol, induces hepatocyte death and subsequent inflammation and fibrosis in the pathogenesis of nonalcoholic steatohepatitis (NASH). However, the underlying mechanisms remain unclear. We have previously reported that hepatocyte death locally induces phenotypic changes in the macrophages surrounding the corpse and remnant lipids, thereby promoting liver fibrosis in a murine model of NASH. Here, we demonstrated that lysosomal cholesterol overload triggers lysosomal dysfunction and profibrotic activation of macrophages during the development of NASH. β-cyclodextrin polyrotaxane (βCD-PRX), a unique supramolecule, is designed to elicit free cholesterol from lysosomes. Treatment with βCD-PRX ameliorated cholesterol accumulation and profibrotic activation of macrophages surrounding dead hepatocytes with cholesterol crystals, thereby suppressing liver fibrosis in a NASH model, without affecting the hepatic cholesterol levels. In vitro experiments revealed that cholesterol-induced lysosomal stress triggered profibrotic activation in macrophages predisposed to the steatotic microenvironment. This study provides evidence that dysregulated cholesterol metabolism in macrophages would be a novel mechanism of NASH.
    DOI:  https://doi.org/10.1084/jem.20220681
  29. PLoS One. 2023 ;18(9): e0291442
      Increasing evidence demonstrate that the electron transfer chain plays a critical role in controlling the effector functions of macrophages. In this work, we have generated a Ndufs4-/- murine macrophage cell lines. The Ndufs4 gene, which encodes a supernumerary subunit of complex I, is a mutational hotspot in Leigh syndrome patients. Ndufs4-/- macrophages showed decreased complex I activity, altered complex I assembly, and lower levels of maximal respiration and ATP production. These mitochondrial respiration alterations were associated with a shift towards a pro-inflammatory cytokine profile after lipopolysaccharide challenge and improved ability to phagocytose Gram-negative bacteria.
    DOI:  https://doi.org/10.1371/journal.pone.0291442
  30. Cell Death Dis. 2023 Sep 21. 14(9): 621
      The enzyme arginase 1 (A1) hydrolyzes the amino acid arginine to form L-ornithine and urea. Ornithine is further converted to polyamines by the ornithine decarboxylase (ODC) enzyme. We previously reported that deletion of myeloid A1 in mice exacerbates retinal damage after ischemia/reperfusion (IR) injury. Furthermore, treatment with A1 protects against retinal IR injury in wild-type mice. PEG-A1 also mitigates the exaggerated inflammatory response of A1 knockout (KO) macrophages in vitro. Here, we sought to identify the anti-inflammatory pathway that confers macrophage A1-mediated protection against retinal IR injury. Acute elevation of intraocular pressure was used to induce retinal IR injury in mice. A multiplex cytokine assay revealed a marked increase in the inflammatory cytokines interleukin 1β (IL-1β) and tumor necrosis factor α (TNF-α) in the retina at day 5 after IR injury. In vitro, blocking the A1/ODC pathway augmented IL-1β and TNF-α production in stimulated macrophages. Furthermore, A1 treatment attenuated the stimulated macrophage metabolic switch to a pro-inflammatory glycolytic phenotype, whereas A1 deletion had the opposite effect. Screening for histone deacetylases (HDACs) which play a role in macrophage inflammatory response showed that A1 deletion or ODC inhibition increased the expression of HDAC3. We further showed the involvement of HDAC3 in the upregulation of TNF-α but not IL-1β in stimulated macrophages deficient in the A1/ODC pathway. Investigating HDAC3 KO macrophages showed a reduced inflammatory response and a less glycolytic phenotype upon stimulation. In vivo, HDAC3 co-localized with microglia/macrophages at day 2 after IR in WT retinas and was further increased in A1-deficient retinas. Collectively, our data provide initial evidence that A1 exerts its anti-inflammatory effect in macrophages via ODC-mediated suppression of HDAC3 and IL-1β. Collectively we propose that interventions that augment the A1/ODC pathway and inhibit HDAC3 may confer therapeutic benefits for the treatment of retinal ischemic diseases.
    DOI:  https://doi.org/10.1038/s41419-023-06147-7
  31. Front Immunol. 2023 ;14 1213026
       Introduction: Novel preventive strategies in periodontal disease target the bacterial-induced inflammatory host response to reduce associated tissue destruction. Strategies focus on the modulation of tissue-destroying inflammatory host response, particularly the reduction of inflammation and promotion of resolution. Thereby, nutrition is a potent immunometabolic non-pharmacological intervention. Human studies have demonstrated the benefit of olive oil-containing Mediterranean-style diets (MDs), the main component of which being mono-unsaturated fatty acid (FA) oleic acid (OA (C18:1)). Hence, nutritional OA strengthened the microarchitecture of alveolar trabecular bone and increased circulating pro-resolving lipid mediators following bacterial inoculation with periodontal pathogen Porphyromonas gingivalis, contrary to saturated FA palmitic acid (PA (C16:0)), which is abundant in Western-style diets. Additionally, the generalized distribution of inflammatory pathway mediators can occur in response to bacterial infection and compromise systemic tissue metabolism and bone homeostasis distant from the side of infection. Whether specific FA-enriched nutrition and periodontal inoculation are factors in systemic pathology that can be immune-modulatory targeted through dietary substitution is unknown and of clinical relevance.
    Methods: Normal-weight C57BL/6-mice received OA-or PA-enriched diets (PA-ED, OA-ED, PA/OA-ED) or a normal-standard diet (n=12/group) for 16 weeks and were orally infected with P. gingivalis/placebo to induce periodontal disease. Using histomorphometry and LC-MS/MS, systemic bone morphology, incorporated immunometabolic FA-species, serological markers of bone metabolism, and stress response were determined in addition to bone cell inflammation and interaction in vitro.
    Results: In contrast to OA-ED, PA-ED reduced systemic bone microarchitecture paralleled by increased lipotoxic PA-containing metabolite accumulation in bone. Substitution with OA reversed the bone-destructive impact of PA, which was accompanied by reduced diacylglycerols (DAG) and saturated ceramide levels. Further, PA-associated reduction in mineralization activity and concomitant pro-inflammatory activation of primary osteoblasts were diminished in cultures where PA was replaced with OA, which impacted cellular interaction with osteoclasts. Additionally, PA-ED increased osteoclast numbers in femurs in response to oral P. gingivalis infection, whereas OA-ED reduced osteoclast occurrence, which was paralleled by serologically increased levels of the stress-reducing lipokine PI(18:1/18:1).
    Conclusion: OA substitution reverses the bone-destructive and pro-inflammatory effects of PA and eliminates incorporated lipotoxic PA metabolites. This supports Mediterranean-style OA-based diets as a preventive intervention to target the accumulation of PA-associated lipotoxic metabolites and thereby supports systemic bone tissue resilience after oral bacterial P. gingivalis infection.
    Keywords:  bone loss; bone remodeling; inflammation; lipids; nutrition; periodontal disease; regeneration
    DOI:  https://doi.org/10.3389/fimmu.2023.1213026
  32. iScience. 2023 Oct 20. 26(10): 107802
      Adoptive cell therapy using allogeneic γδ-T cells is a promising option for off-the-shelf T cell products with a low risk of graft-versus-host disease (GVHD). Long-term persistence may boost the clinical development of γδ-T cell products. In this study, we found that genetically modified Vγ9+Vδ2+ T cells expressing a tumor antigen-specific αβ-TCR and CD8 coreceptor (GMC) showed target-specific killing and excellent persistence. To determine the mechanisms underlying these promising effects, we investigated metabolic characteristics. Cytokine secretion by γδ-TCR-stimulated nongene-modified γδ-T cells (NGMCs) and αβ-TCR-stimulated GMCs was equally suppressed by a glycolysis inhibitor, although the cytokine secretion of αβ-TCR-stimulated GMCs was more strongly inhibited by ATP synthase inhibitors than that of γδ-TCR-stimulated NGMCs. Metabolomic and transcriptomic analyses, flow cytometry analysis using mitochondria-labeling dyes and extracellular flux analysis consistently suggest that αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function. In conclusion, αβ-TCR-transduced γδ-T cells acquire superior mitochondrial function with promising persistence.
    Keywords:  Cellular therapy; Immunology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2023.107802
  33. Mucosal Immunol. 2023 Sep 18. pii: S1933-0219(23)00070-3. [Epub ahead of print]
      Influenza virus-induced respiratory pneumonia remains a major public health concern. Obesity, metabolic diseases, and female sex are viewed as independent risk factors for worsened influenza virus-induced lung disease severity. However, lack of experimental models of severe obesity in female mice limits studies. Here, via utility of thermoneutral housing (TN, 30°C) and high fat diet (HFD) feeding, we induced severe obesity and metabolic disease in female C57BL/6 mice and compared their responses to severely obese male C57BL/6 counterparts during influenza virus infection. We show that lean male and female mice have similar lung edema, inflammation, and immune cell infiltration during influenza virus infection. At standard housing conditions, HFD-fed male, but not female, mice exhibit severe obesity, metabolic disease, and exacerbated influenza disease severity. However, combining TN-housing and HFD feeding in female mice induces severe obesity and metabolic disease, which is sufficient to amplify influenza virus-driven disease severity to a level comparable to severely obese male counterparts. Lastly, increased total body weights of male and female mice at time of infection correlated with worsened influenza virus-driven disease severity metrics. Together, our findings confirm the impact of obesity and metabolic disease as key risk factors to influenza disease severity and present a novel mouse experimental model suitable for mechanistic interrogation of sex, obesity, and metabolic disease traits in influenza virus-driven disease severity.
    DOI:  https://doi.org/10.1016/j.mucimm.2023.09.004
  34. Cytokine. 2023 Sep 18. pii: S1043-4666(23)00250-8. [Epub ahead of print]171 156372
       BACKGPOUND: Metabolically driven chronic low-grade adipose tissue inflammation, so-called metaflammation, is a central feature in obesity. This inflammatory tone is largely driven by adipose tissue macrophages (ATM), which express pro- and anti-inflammatory markers and cytokines such as, e.g., IL-1 receptor antagonist (IL-1RA), CD163 and osteopontin (OPN). Metaflammation ultimately leads to the development of cardiometabolic diseases. This study aimed to evaluate the association between selected adipose tissue macrophage-associated markers and metabolic comorbidities in pediatric obesity.
    METHODS: From a pediatric cohort with obesity (n = 108), clinically thoroughly characterized including diverse routine blood parameters, oral glucose tolerance test and liver MRI, plasma IL-1RA, soluble (s)CD163 and OPN were measured by ELISA.
    RESULTS: We observed significantly higher IL-1RA, sCD163, and OPN levels in the plasma of children with metabolic-dysfunction associated fatty liver disease (MAFLD) and metabolic syndrome. Moreover, IL-1RA and sCD163 correlated with hepatic disease and apoptosis markers alanine aminotransferase and CK-18. IL-1RA concentrations additionally correlated with insulin resistance, while children with disturbed glucose metabolism had significantly higher levels of sCD163.
    CONCLUSION: MAFLD and other metabolic disorders in pediatric patients with obesity are associated with an elevation of adipose tissue macrophage-related inflammation markers.
    Keywords:  Adipose tissue macrophages; Interleukin-1 receptor antagonist; Metabolic-dysfunction associated fatty liver disease; Osteopontin; Soluble CD163
    DOI:  https://doi.org/10.1016/j.cyto.2023.156372
  35. Nat Commun. 2023 09 16. 14(1): 5749
      Microglia, the innate immune cells of the central nervous system, actively participate in brain development by supporting neuronal maturation and refining synaptic connections. These cells are emerging as highly metabolically flexible, able to oxidize different energetic substrates to meet their energy demand. Lactate is particularly abundant in the brain, but whether microglia use it as a metabolic fuel has been poorly explored. Here we show that microglia can import lactate, and this is coupled with increased lysosomal acidification. In vitro, loss of the monocarboxylate transporter MCT4 in microglia prevents lactate-induced lysosomal modulation and leads to defective cargo degradation. Microglial depletion of MCT4 in vivo leads to impaired synaptic pruning, associated with increased excitation in hippocampal neurons, enhanced AMPA/GABA ratio, vulnerability to seizures and anxiety-like phenotype. Overall, these findings show that selective disruption of the MCT4 transporter in microglia is sufficient to alter synapse refinement and to induce defects in mouse brain development and adult behavior.
    DOI:  https://doi.org/10.1038/s41467-023-41502-4
  36. Mol Neurobiol. 2023 Sep 20.
      Mitochondrial dysfunction is one of the hallmarks in the pathophysiology of prion disease and other neurodegenerative diseases. Various metabolic dysfunctions are identified and considered to contribute to the progression of some types of neurodegenerative diseases. In this study, we evaluated the status of glycolysis pathway in prion-infected rodent and cell models. The levels of the key enzymes, hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK) were significantly increased, accompanying with markedly downregulated mitochondrial complexes. Double-stained IFAs revealed that the increased HK2 and PFK distributed widely in GFAP-, Iba1-, and NeuN-positive cells. We also identified increased levels of AMP-activated protein kinase (AMPK) and the downstream signaling. Changes of AMPK activity in prion-infected cells by the AMPK-specific inhibitor or activator induced the corresponding alterations not only in the downstream signaling, but also the expressions of three key kinases in glycolysis pathway and the mitochondrial complexes. Transient removal or complete clearance of prion propagation in the prion-infected cells partially but significantly reversed the increases of the key enzymes in glycolysis, the upregulation of AMPK signaling pathway, and the decreases of the mitochondrial complexes. Measurements of the cellular oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) showed lower OCR and higher ECAR in prion-infected cell line, which were sufficiently reversed by clearance of prion propagation. Those data indicate a metabolic reprogramming from oxidative phosphorylation to glycolysis in the brains during the progression of prion disease. Accumulation of PrPSc is critical for the switch to glycolysis, largely via activating AMPK pathway.
    Keywords:  AMPK signaling; Glycolysis; Mitochondrial complex; Prion
    DOI:  https://doi.org/10.1007/s12035-023-03621-3
  37. Mucosal Immunol. 2023 Sep 14. pii: S1933-0219(23)00069-7. [Epub ahead of print]
      Inflammatory diseases of the digestive tract, including inflammatory bowel disease (IBD), cause metabolic stress within mucosal tissue. Creatine is a key energetic regulator. We previously reported a loss of creatine kinases (CKs) and the creatine transporter expression in IBD patient intestinal biopsy samples and that creatine supplementation was protective in a dextran sulfate sodium (DSS) colitis mouse model. In the present studies, we evaluated the role of CK loss in active inflammation using the DSS colitis model. Mice lacking expression of CKB/CKMit (CKdKO) showed increased susceptibility to DSS colitis (weight loss, disease activity, permeability, colon length and histology). In a broad cytokine profiling, CKdKO mice expressed near absent IFN-γ levels. We identified losses in IFN-γ production from CD4+ and CD8+ T cells isolated from CKdKO mice. Addback of IFN-γ during DSS treatment resulted in partial protection for CKdKO mice. Extensions of these studies identified basal stabilization of the transcription factor hypoxia-inducible factor (HIF) in CKdKO splenocytes and pharmacological stabilization of HIF resulted in reduced IFN-γ production by control splenocytes. Thus, the loss of IFN-γ production by CD4+ and CD8+ T cells in CKdKO mice resulted in increased colitis susceptibility and indicates that CK is protective in active mucosal inflammation.
    Keywords:  T cell; cytokine; energetics; inflammation; metabolism
    DOI:  https://doi.org/10.1016/j.mucimm.2023.09.002
  38. BMC Anesthesiol. 2023 Sep 18. 23(1): 317
       BACKGROUND: Dexamethasone (Dexa) has been recently found to exert an analgesic effect, whose action is closely related to IL-8. However, whether dexamethasone induces antinociception via glycolysis and mitochondria-related pathways is still unclear.
    METHODS: Right hind paw inflammatory pain in mice was induced by intraplantar injection of Freund's Complete Adjuvant (FCA). Von Frey test was then used to measure the paw withdrawal threshold. The detection of glycolysis and mitochondrial pathway-related proteins and IL-8 were determined by Western blot and ELISA. The potential interaction between Dexa and fructose-1,6-bisphosphate (FBP, a PKM2 activator) was examined by simulation predictions using molecular docking.
    RESULTS: Intrathecal administration of Dexa (20 µg/20 µL) had an obvious analgesic effect in FCA-treated mice, which was counteracted by the glycolysis inhibitor 2-deoxyglucose (2-DG, 5 mg/20 µL) or the mitochondria-related pathway inhibitor oligomycin complex (Oligo, 5 µg/20 µL). In the glycolysis pathway, Dexa decreased GLUT3 and had no impact on HIF-1α expression during FCA-induced inflammation. Additionally, Dexa further increased the PKM2 level, accompanied by the formation of hydrogen bonds between Dexa and the PKM2 activator fructose-1,6-bisphosphate (FBP). In the mitochondrial pathway, Dexa downregulated the expression of Mfn2 protein but not the PGC-1α and SIRT-1 levels in the spinal cord. Moreover, both 2-DG and Oligo decreased Mfn2 expression. Finally, IL-8 level was reduced by the single or combined administration of Dexa, 2-DG, and Oligo.
    CONCLUSION: Dexa attenuated IL-8 expression via glycolysis and mitochondrial pathway-related proteins, thus mediating the analgesic effect during inflammatory pain.
    Keywords:  Dexamethasone; Glycolysis; IL-8; Inflammatory pain; Mitochondrial pathway
    DOI:  https://doi.org/10.1186/s12871-023-02277-9