Int Immunopharmacol. 2023 Mar 23. pii: S1567-5769(23)00342-9. [Epub ahead of print]118
110021
Metabolic reprogramming has been shown to aggravate sepsis-induced acute lung injury. In particular, enhanced glycolysis is closely associated with inflammation and oxidative stress. Eriocitrin (ERI) is a natural flavonoid found in citrus fruit that exhibits various pharmacological activities, with antioxidant, anti-inflammatory, anti-diabetic, and anti-tumor properties. However, the role of ERI in lung injury is not well understood. We established a septic mouse model of acute lung injury (ALI) using lipopolysaccharide (LPS) for induction. Primary peritoneal macrophages were isolated to verify the relevant molecular mechanism. Tissues were assessed for lung pathology, pro-inflammatory cytokines, markers of oxidative stress, and protein and mRNA expression levels. In vivo experiments showed that ERI effectively alleviated LPS-induced pathological injury, suppress the inflammatory response (TNF-α, IL-1β, IL-6 levels) and decreased oxidative stress (MDA, ROS) in murine lung tissue. In vitro, ERI increased the resistance of LPS-treated cells to excessive inflammation and oxidative stress by inhibiting the enhancement of glycolysis (indicated by expression levels of HIF-1α, HK2, LDHA, PFKFB3, and PKM2). Specifically, the beneficial effects of ERI following LPS-induced lung injury occurred through promoting the expression of MKP1, which mediates the inactivation of the MAPK pathway to inhibit enhanced glycolysis. These results demonstrate that ERI has a protective effect on sepsis-induced ALI by regulating MKP1/MAPK pathway mediated-glycolysis. Hence, ERI is a promising candidate against ALI via inhibiting glycolysis.
Keywords: Eriocitrin; Glycolysis; MKP1; Sepsis-induced ALI