bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2023‒02‒12
thirty-six papers selected by
Dylan Ryan
University of Cambridge

  1. bioRxiv. 2023 Jan 24. pii: 2023.01.24.525419. [Epub ahead of print]
      Inborn Errors of Metabolism (IEM) and Immunity (IEI) are Mendelian diseases in which complex phenotypes and patient rarity can limit clinical annotations. Few genes are assigned to both IEM and IEI, but immunometabolic demands suggest functional overlap is underestimated. We applied CRISPR screens to test IEM genes for immunologic roles and IEI genes for metabolic effects and found considerable crossover. Analysis of IEM showed N-linked glycosylation and the de novo hexosamine synthesis enzyme, Gfpt1 , are critical for T cell expansion and function. Interestingly, Gfpt1 -deficient T H 1 cells were more affected than T H 17 cells, which had increased Nagk for salvage UDP-GlcNAc synthesis. Screening IEI genes showed the transcription factor Bcl11b promotes CD4 + T cell mitochondrial activity and Mcl1 expression necessary to prevent metabolic stress. These data illustrate a high degree of functional overlap of IEM and IEI genes and point to potential immunometabolic mechanisms for a previously unappreciated set of these disorders.HIGHLIGHTS: Inborn errors of immunity and metabolism have greater overlap than previously known Gfpt1 deficiency causes an IEM but also selectively regulates T cell subset fate Loss of Bcl11b causes a T cell deficiency IEI but also harms mitochondrial function Many IEM may have immune defects and IEI may be driven by metabolic mechanisms.
  2. Immunity. 2023 Jan 31. pii: S1074-7613(23)00021-3. [Epub ahead of print]
      In vitro studies have associated oxidative phosphorylation (OXPHOS) with anti-inflammatory macrophages, whereas pro-inflammatory macrophages rely on glycolysis. However, the metabolic needs of macrophages in tissues (TMFs) to fulfill their homeostatic activities are incompletely understood. Here, we identified OXPHOS as the highest discriminating process among TMFs from different organs in homeostasis by analysis of RNA-seq data in both humans and mice. Impairing OXPHOS in TMFs via Tfam deletion differentially affected TMF populations. Tfam deletion resulted in reduction of alveolar macrophages (AMs) due to impaired lipid-handling capacity, leading to increased cholesterol content and cellular stress, causing cell-cycle arrest in vivo. In obesity, Tfam depletion selectively ablated pro-inflammatory lipid-handling white adipose tissue macrophages (WAT-MFs), thus preventing insulin resistance and hepatosteatosis. Hence, OXPHOS, rather than glycolysis, distinguishes TMF populations and is critical for the maintenance of TMFs with a high lipid-handling activity, including pro-inflammatory WAT-MFs. This could provide a selective therapeutic targeting tool.
    Keywords:  Tfam; cholesterol handling; immunometabolism; obesity; oxidative phosphorylation; pro-inflammatory macrophages; tissue macrophages
  3. Cell Metab. 2023 Feb 07. pii: S1550-4131(23)00009-8. [Epub ahead of print]35(2): 299-315.e8
      FOXP3+ regulatory T cells (Tregs) are central for peripheral tolerance, and their deregulation is associated with autoimmunity. Dysfunctional autoimmune Tregs display pro-inflammatory features and altered mitochondrial metabolism, but contributing factors remain elusive. High salt (HS) has been identified to alter immune function and to promote autoimmunity. By investigating longitudinal transcriptional changes of human Tregs, we identified that HS induces metabolic reprogramming, recapitulating features of autoimmune Tregs. Mechanistically, extracellular HS raises intracellular Na+, perturbing mitochondrial respiration by interfering with the electron transport chain (ETC). Metabolic disturbance by a temporary HS encounter or complex III blockade rapidly induces a pro-inflammatory signature and FOXP3 downregulation, leading to long-term dysfunction in vitro and in vivo. The HS-induced effect could be reversed by inhibition of mitochondrial Na+/Ca2+ exchanger (NCLX). Our results indicate that salt could contribute to metabolic reprogramming and that short-term HS encounter perturb metabolic fitness and long-term function of human Tregs with important implications for autoimmunity.
    Keywords:  FOXP3; autoimmunity; high salt; mitochondrial respiration; regulatory T cells
  4. Sci Transl Med. 2023 Feb 08. 15(682): eade3782
      Preservation quality of donor hearts is a key determinant of transplant success. Preservation duration beyond 4 hours is associated with primary graft dysfunction (PGD). Given transport time constraints, geographical limitations exist for donor-recipient matching, leading to donor heart underutilization. Here, we showed that metabolic reprogramming through up-regulation of the enzyme immune response gene 1 (IRG1) and its product itaconate improved heart function after prolonged preservation. Irg1 transcript induction was achieved by adding the histone deacetylase (HDAC) inhibitor valproic acid (VPA) to a histidine-tryptophan-ketoglutarate solution used for donor heart preservation. VPA increased acetylated H3K27 occupancy at the IRG1 enhancer and IRG1 transcript expression in human donor hearts. IRG1 converts aconitate to itaconate, which has both anti-inflammatory and antioxidant properties. Accordingly, our studies showed that Irg1 transcript up-regulation by VPA treatment increased nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) in mice, which was accompanied by increased antioxidant protein expression [hemeoxygenase 1 (HO1) and superoxide dismutase 1 (SOD1)]. Deletion of Irg1 in mice (Irg1-/-) negated the antioxidant and cardioprotective effects of VPA. Consistent with itaconate's ability to inhibit succinate dehydrogenase, VPA treatment of human hearts increased itaconate availability and reduced succinate accumulation during preservation. VPA similarly increased IRG1 expression in pig donor hearts and improved its function in an ex vivo cardiac perfusion system both at the clinical 4-hour preservation threshold and at 10 hours. These results suggest that augmentation of cardioprotective immune-metabolomic pathways may be a promising therapeutic strategy for improving donor heart function in transplantation.
  5. Acta Biomater. 2023 Feb 06. pii: S1742-7061(23)00069-7. [Epub ahead of print]
      Since the recent observation that immune cells undergo metabolic reprogramming upon activation, there has been immense research in this area to not only understand the basis of such changes, but also to exploit metabolic rewiring for therapeutic benefit. In a resting state, macrophages preferentially utilise oxidative phosphorylation to generate energy; however, in the presence of immune cell activators, glycolytic genes are upregulated, and energy is generated through glycolysis. This facilitates the rapid production of biosynthetic intermediates and a pro-inflammatory macrophage phenotype. While this is essential to mount responses to infectious agents, more evidence is accumulating linking dysregulated metabolism to inappropriate immune responses. Given that certain biomaterials are known to promote an inflammatory macrophage phenotype, this prompted us to investigate if biomaterial particulates can impact on macrophage metabolism. Using micron and nano sized hydroxyapatite (HA), we demonstrate for the first time that these biomaterials can indeed drive changes in metabolism, and that this occurs in a size-dependent manner. We show that micronHA, but not nanoHA, particles upregulate surrogate markets of glycolysis including the glucose transporter (GLUT1), hexokinase 2 (HK2), GAPDH, and PKM2. Furthermore, we demonstrate that micronHA alters mitochondrial morphology and promotes a bioenergetic shift to favour glycolysis. Finally, we demonstrate that glycolytic gene expression is dependent on particle uptake and that targeting glycolysis attenuates the pro-inflammatory profile of micronHA-treated macrophages. These results not only further our understanding of biomaterial-based macrophage activation, but also implicate immunometabolism as a new area for consideration in intelligent biomaterial design and therapeutic targeting. STATEMENT OF SIGNIFICANCE: Several recent studies have reported that immune cell activation occurs concurrently with metabolic reprogramming. Furthermore, metabolic reprogramming of innate immune cells plays a prominent role in determining cellular phenotype and function. In this study we demonstrate that hydroxyapatite particle size alters macrophage metabolism, in turn driving their functional phenotype. Specifically, the pro-inflammatory phenotype promoted by micron-sized HA-particles is accompanied by changes in mitochondrial dynamics and a bioenergetic shift favouring glycolysis. This effect is not seen with nano-HA particles and can be attenuated upon inhibition of glycolysis. This study therefore not only identifies immunometabolism as a useful tool for characterising the immune response to biomaterials, but also highlights immunometabolism as a targetable aspect of the host response for therapeutic benefit.
    Keywords:  Immunometabolism; hydroxyapatite; immunomodulation; macrophages; particle size
  6. Cell Metab. 2023 Feb 07. pii: S1550-4131(23)00008-6. [Epub ahead of print]35(2): 228-230
      Although metabolic rewiring of Treg cells constitutes a hallmark in autoimmune diseases, extrinsic and intrinsic mechanisms that imprint on this re-programming remain poorly understood. In this issue of Cell Metabolism, Côrte-Real and colleagues demonstrate that high salt exposure disturbs the mitochondrial respiration in Treg cells, promoting a pro-inflammatory phenotype, loss of function, and associated breakdown of self-tolerance.
  7. Cancers (Basel). 2023 Jan 20. pii: 657. [Epub ahead of print]15(3):
      To evade immune surveillance, tumors develop a hostile microenvironment that inhibits anti-tumor immunity. Recent immunotherapy breakthroughs that target the reinvigoration of tumor-infiltrating T lymphocytes (TIL) have led to unprecedented success in treating some cancers that are resistant to conventional therapy, suggesting that T cells play a pivotal role in anti-tumor immunity. In the hostile tumor microenvironment (TME), activated T cells are known to mainly rely on aerobic glycolysis to facilitate their proliferation and anti-tumor function. However, TILs usually exhibit an exhausted phenotype and impaired anti-tumor activity due to the limited availability of key nutrients (e.g., glucose) in the TME. Given that different T cell subsets have unique metabolic pathways which determine their effector function, this review introduces our current understanding of T cell development, activation signals and metabolic pathways. Moreover, emerging evidence suggests that fatty acid binding protein 5 (FABP5) expression in T cells regulates T cell lipid metabolism and function. We highlight how FABP5 regulates fatty acid uptake and oxidation, thus shaping the survival and function of different T cell subsets in the TME.
    Keywords:  FABP5; T cells; immunotherapy; lipid metabolism; obesity; tumor microenvironment
  8. Front Immunol. 2023 ;14 1064101
      Cellular metabolism is essential for the correct function of immune system cells, including Natural Killer cells (NK). These cells depend on energy to carry out their effector functions, especially in the early stages of viral infection. NK cells participate in the innate immune response against viruses and tumors. Their main functions are cytotoxicity and cytokine production. Metabolic changes can impact intracellular signals, molecule production, secretion, and cell activation which is essential as the first line of immune defense. Metabolic variations in different immune cells in response to a tumor or pathogen infection have been described; however, little is known about NK cell metabolism in the context of viral infection. This review summarizes the activation-specific metabolic changes in NK cells, the immunometabolism of NK cells during early, late, and chronic antiviral responses, and the metabolic alterations in NK cells in SARS-CoV2 infection. The modulation points of these metabolic routes are also discussed to explore potential new immunotherapies against viral infections.
    Keywords:  glycolysis; immunometabolism; natural killer cells (NK cells); oxidative phosphorylation; viral infection
  9. Mol Cells. 2023 Feb 09.
      Pyruvate metabolism, a key pathway in glycolysis and oxidative phosphorylation, is crucial for energy homeostasis and mitochondrial quality control (MQC), including fusion/fission dynamics and mitophagy. Alterations in pyruvate flux and MQC are associated with reactive oxygen species accumulation and Ca2+ flux into the mitochondria, which can induce mitochondrial ultrastructural changes, mitochondrial dysfunction and metabolic dysregulation. Perturbations in MQC are emerging as a central mechanism for the pathogenesis of various metabolic diseases, such as neurodegenerative diseases, diabetes and insulin resistance-related diseases. Mitochondrial Ca2+ regulates the pyruvate dehydrogenase complex (PDC), which is central to pyruvate metabolism, by promoting its dephosphorylation. Increase of pyruvate dehydrogenase kinase (PDK) is associated with perturbation of mitochondria-associated membranes (MAMs) function and Ca2+ flux. Pyruvate metabolism also plays an important role in immune cell activation and function, dysregulation of which also leads to insulin resistance and inflammatory disease. Pyruvate metabolism affects macrophage polarization, mitochondrial dynamics and MAM formation, which are critical in determining macrophage function and immune response. MAMs and MQCs have also been intensively studied in macrophage and T cell immunity. Metabolic reprogramming connected with pyruvate metabolism, mitochondrial dynamics and MAM formation are important to macrophages polarization (M1/M2) and function. T cell differentiation is also directly linked to pyruvate metabolism, with inhibition of pyruvate oxidation by PDKs promoting proinflammatory T cell polarization. This article provides a brief review on the emerging role of pyruvate metabolism in MQC and MAM function, and how dysfunction in these processes leads to metabolic and inflammatory diseases.
    Keywords:  T cell; macrophage; mitochondria quality control; mitochondria-associated membranes; pyruvate dehydrogenase complex; pyruvate dehydrogenase kinase
  10. Front Immunol. 2023 ;14 1018076
      We have previously identified an immune modulating peptide, termed FhHDM-1, within the secretions of the liver fluke, Fasciola hepatica, which is sufficiently potent to prevent the progression of type 1 diabetes and multiple sclerosis in murine models of disease. Here, we have determined that the FhHDM-1 peptide regulates inflammation by reprogramming macrophage metabolism. Specifically, FhHDM-1 switched macrophage metabolism to a dependence on oxidative phosphorylation fuelled by fatty acids and supported by the induction of glutaminolysis. The catabolism of glutamine also resulted in an accumulation of alpha ketoglutarate (α-KG). These changes in metabolic activity were associated with a concomitant reduction in glycolytic flux, and the subsequent decrease in TNF and IL-6 production at the protein level. Interestingly, FhHDM-1 treated macrophages did not express the characteristic genes of an M2 phenotype, thereby indicating the specific regulation of inflammation, as opposed to the induction of an anti-inflammatory phenotype per se. Use of an inactive derivative of FhHDM-1, which did not modulate macrophage responses, revealed that the regulation of immune responses was dependent on the ability of FhHDM-1 to modulate lysosomal pH. These results identify a novel functional association between the lysosome and mitochondrial metabolism in macrophages, and further highlight the significant therapeutic potential of FhHDM-1 to prevent inflammation.
    Keywords:  Fasciola hepatica; alpha-ketoglutarate (α-KG); fatty acid oxidation (FAO); glutaminolysis; helminth defence molecule; immune regulation; immunometabolism; macrophage
  11. Eur J Pharmacol. 2023 Feb 02. pii: S0014-2999(23)00063-8. [Epub ahead of print] 175552
      Increased aerobic glycolysis is a metabolic hallmark of proinflammatory leukocytes including macrophages and T cells. To take up glucose from the environment and fuel glycolysis, activated leukocytes upregulate the glucose transporter GLUT1. The orally bioavailable selective GLUT1 inhibitor BAY-876 was developed primarily as an anti-tumor drug. Our study assessed its activity on activated macrophages and CD4+ T cells. BAY-876 significantly attenuated glucose uptake by cultured CD4+ T cells and macrophages by 41% and 15%, respectively. Extracellular flux analysis of activated CD4+ T cells in vitro showed that BAY-876 significantly decreases glycolytic proton flux rate and lactate production, effects that are accompanied by an increased oxidative phosphorylation-mediated ATP production rate, leaving intracellular ATP levels per cell unchanged. However, GLUT1 inhibition reduced CD4+ T cell proliferation without compromising cell viability and reduced IFN-γ secretion by 20%. Moreover, TNF secretion from macrophages was reduced by 27%. We conclude that GLUT1-specific inhibitors, like BAY-876, deserve further in vivo testing in a broad range of (auto-) inflammatory disease models.
    Keywords:  GLUT1; Glucose; Glycolysis; Immunometabolism
  12. Nat Rev Immunol. 2023 Feb 08.
      Initiating and maintaining optimal immune responses requires high levels of protein synthesis, folding, modification and trafficking in leukocytes, which are processes orchestrated by the endoplasmic reticulum. Importantly, diverse extracellular and intracellular conditions can compromise the protein-handling capacity of this organelle, inducing a state of 'endoplasmic reticulum stress' that activates the unfolded protein response (UPR). Emerging evidence shows that physiological or pathological activation of the UPR can have effects on immune cell survival, metabolism, function and fate. In this Review, we discuss the canonical role of the adaptive UPR in immune cells and how dysregulation of this pathway in leukocytes contributes to diverse pathologies such as cancer, autoimmunity and metabolic disorders. Furthermore, we provide an overview as to how pharmacological approaches that modulate the UPR could be harnessed to control or activate immune cell function in disease.
  13. Int J Mol Sci. 2023 Jan 19. pii: 2010. [Epub ahead of print]24(3):
      Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a disabling multisystem illness in which individuals are plagued with fatigue, inflammatory symptoms, cognitive dysfunction, and the hallmark symptom, post-exertional malaise. While the cause of this disease remains unknown, there is evidence of a potential infectious component that, along with patient symptoms and common onsets of the disease, implicates immune system dysfunction. To further our understanding of the state of ME/CFS lymphocytes, we characterized the role of fatty acids in isolated Natural Killer cells, CD4+ T cells, and CD8+ T cells in circulation and after overnight stimulation, through implicit perturbations to fatty acid oxidation. We examined samples obtained from at least 8 and as many as 20 subjects for immune cell fatty acid characterization in a variety of experiments and found that all three isolated cell types increased their utilization of lipids and levels of pertinent proteins involved in this metabolic pathway in ME/CFS samples, particularly during higher energy demands and activation. In T cells, we characterized the cell populations contributing to these metabolic shifts, which included CD4+ memory cells, CD4+ effector cells, CD8+ naïve cells, and CD8+ memory cells. We also discovered that patients with ME/CFS and healthy control samples had significant correlations between measurements of CD4+ T cell fatty acid metabolism and demographic data. These findings provide support for metabolic dysfunction in ME/CFS immune cells. We further hypothesize about the consequences that these altered fuel dependencies may have on T and NK cell effector function, which may shed light on the illness's mechanism of action.
    Keywords:  Natural Killer cells; T cells; beta-oxidation; chronic fatigue syndrome; fatty acid oxidation; immunometabolism; myalgic encephalomyelitis
  14. Biochem Biophys Res Commun. 2023 Jan 20. pii: S0006-291X(23)00091-8. [Epub ahead of print]648 81-86
      Patients with neuropsychiatric disorders often exhibit an altered metabolic status. However, the underlying factors that induce behavioral and metabolic dysfunctions remain poorly understood. Therefore, we investigated whether behavioral and metabolic alterations could be induced in immunodeficient conditions. We found that T-cell-deficient Cd3e-/- mice exhibit deficits in social behavior associated with dyslipidemia. Cd3e-/- mice exhibited abnormal social novelty preference, but normal anxiety-like behavior. We also detected decreases in the concentrations of plasma triglyceride and the lipid transporter molecule fatty acid-binding protein 2. Furthermore, the adoptive transfer of T-cells to Cd3e-/- mice ameliorated the deficits in social behavior and recovered plasma triglyceride concentration. Thus, we found that T-cell disruption can induce defects in social behavior and systemic lipid homeostasis in mice. Given these findings, we believe that Cd3e-/- mice represent a useful tool for investigating the mechanisms of causal relationships among immune dysfunction, behavior, and metabolism.
    Keywords:  Adaptive immune dysfunction; Dyslipidemia; Social behavior; T-cell deficiency
  15. Int J Mol Sci. 2023 Jan 20. pii: 2094. [Epub ahead of print]24(3):
      Multiple sclerosis (MS) is a chronic autoimmune disease of the central nervous system (CNS) characterised by acute inflammation and subsequent neuro-axonal degeneration resulting in progressive neurological impairment. Aberrant immune system activation in the periphery and subsequent lymphocyte migration to the CNS contribute to the pathophysiology. Recent research has identified metabolic dysfunction as an additional feature of MS. It is already well known that energy deficiency in neurons caused by impaired mitochondrial oxidative phosphorylation results in ionic imbalances that trigger degenerative pathways contributing to white and grey matter atrophy. However, metabolic dysfunction in MS appears to be more widespread than the CNS. This review focuses on recent research assessing the metabolism and mitochondrial function in peripheral immune cells of MS patients and lymphocytes isolated from murine models of MS. Emerging evidence suggests that pharmacological modulation of lymphocytic metabolism may regulate their subtype differentiation and rebalance pro- and anti-inflammatory functions. As such, further understanding of MS immunometabolism may aid the identification of novel treatments to specifically target proinflammatory immune responses.
    Keywords:  autoimmunity; glycolysis; lymphocytes; metabolism; mitochondria; multiple sclerosis; oxidative stress; peripheral blood mononuclear cells
  16. Mol Metab. 2023 Feb 04. pii: S2212-8778(23)00020-0. [Epub ahead of print] 101686
      OBJECTIVE: Obesity is associated with metabolic dysfunction of white adipose tissue (WAT). Activated adipocytes secrete pro-inflammatory cytokines resulting in the recruitment of pro-inflammatory macrophages, which contribute to WAT insulin resistance. The bile acid (BA)-activated nuclear Farnesoid X Receptor (FXR) controls systemic glucose and lipid metabolism. Here, we studied the role of FXR in adipose tissue function.METHODS: We first investigated the immune phenotype of epididymal WAT (eWAT) from high fat diet (HFD)-fed whole-body FXR-deficient (FXR-/-) mice by flow cytometry and gene expression analysis. We then generated adipocyte-specific FXR-deficient (Ad-FXR-/-) mice and analyzed systemic and eWAT metabolism and immune phenotype upon HFD feeding. Transcriptomic analysis was done on mature eWAT adipocytes from HFD-fed Ad-FXR-/- mice.
    RESULTS: eWAT from HFD-fed whole-body FXR-/- and Ad-FXR-/- mice displayed decreased pro-inflammatory macrophage infiltration and inflammation. Ad-FXR-/- mice showed lower blood glucose concentrations, improved systemic glucose tolerance and WAT insulin sensitivity and oxidative stress. Transcriptomic analysis identified Gsta4, a modulator of oxidative stress in WAT, as the most upregulated gene in Ad-FXR-/- mouse adipocytes. Finally, chromatin immunoprecipitation analysis showed that FXR binds the Gsta4 gene promoter.
    CONCLUSIONS: These results indicate a role for the adipocyte FXR-GSTA4 axis in controlling HFD-induced inflammation and systemic glucose homeostasis.
    Keywords:  Glucose metabolism; Inflammation; Nuclear receptor FXR; Oxidative stress; White adipose tissue
  17. Biochim Biophys Acta Mol Cell Biol Lipids. 2023 Feb 06. pii: S1388-1981(23)00015-X. [Epub ahead of print] 159291
      Retinoic acid possesses potent immunomodulatory properties in various cell types, including macrophages. In this study, we first investigated the effects at the transcriptional and functional levels of exogenous retinoic acid in murine bone marrow-derived macrophages (BMDMs) in the presence or absence of interleukin 4 (IL4), a cytokine with potent anti-inflammatory properties. We examined the effect of IL4 on vitamin A homeostasis in macrophages by quantifying retinoid synthesis and secretion. Our RNAseq data show that exogenous retinoic acid synergizes with IL4 to regulate anti-inflammatory pathways such as oxidative phosphorylation and phagocytosis. Efferocytosis and lysosomal degradation assays validated gene expression changes at the functional level. IL4 treatment altered the expression of several genes involved in vitamin A transport and conversion to retinoic acid. Radiolabeling experiments and mass spectrometry assays revealed that IL4 stimulates retinoic acid production and secretion in a signal transducer and activator of transcription 6 (STAT6)-dependent manner. In summary, our studies highlight the key role of exogenous and endogenous retinoic acid in shaping the anti-inflammatory response of macrophages.
    Keywords:  Immunometabolism; Macrophage; Retinoids; Vitamin A
  18. Nat Commun. 2023 Feb 07. 14(1): 660
      Stimulator of interferon gene (STING)-triggered autophagy is crucial for the host to eliminate invading pathogens and serves as a self-limiting mechanism of STING-induced interferon (IFN) responses. Thus, the mechanisms that ensure the beneficial effects of STING activation are of particular importance. Herein, we show that myristic acid, a type of long-chain saturated fatty acid (SFA), specifically attenuates cGAS-STING-induced IFN responses in macrophages, while enhancing STING-dependent autophagy. Myristic acid inhibits HSV-1 infection-induced innate antiviral immune responses and promotes HSV-1 replication in mice in vivo. Mechanistically, myristic acid enhances N-myristoylation of ARF1, a master regulator that controls STING membrane trafficking. Consequently, myristic acid facilitates STING activation-triggered autophagy degradation of the STING complex. Thus, our work identifies myristic acid as a metabolic checkpoint that contributes to immune homeostasis by balancing STING-dependent autophagy and IFN responses. This suggests that myristic acid and N-myristoylation are promising targets for the treatment of diseases caused by aberrant STING activation.
  19. J Cereb Blood Flow Metab. 2023 Feb 11. 271678X231157298
      The goal of this study was to evaluate changes in metabolic homeostasis during the first 12 weeks of recovery in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we compared the brain metabolomes of ipsilateral and contralateral hemispheres from aged male mice up to 12 weeks after stroke to that of age-matched naïve and sham mice. There were 707 biochemicals detected in each sample by liquid chromatography-mass spectroscopy (LC-MS). Mitochondrial fatty acid β-oxidation, indicated by acyl carnitine levels, was increased in stroked tissue at 1 day and 4 weeks following stroke. Glucose and several glycolytic intermediates were elevated in the ipsilateral hemisphere for 12 weeks compared to the aged naïve controls, but pyruvate was decreased. Additionally, itaconate, a glycolysis inhibitor associated with activation of anti-inflammatory mechanisms in myeloid cells, was higher in the same comparisons. Spatial transcriptomics and RNA in situ hybridization localized these alterations to microglia within the area of axonal degeneration. These results indicate that chronic metabolic differences exist between stroked and control brains, including alterations in fatty acid metabolism and glycolysis within microglia in areas of degenerating white matter for at least 12 weeks after stroke.
    Keywords:  glycolysis; itaconate; metabolism; stroke; β-Oxidation
  20. Am J Physiol Gastrointest Liver Physiol. 2023 Feb 07.
      Macrophages are essential for homeostatic maintenance of the anti-inflammatory and tolerogenic intestinal environment, yet monocyte-derived macrophages can promote local inflammation. Pro-inflammatory macrophage accumulation within the intestines may contribute to the development of systemic chronic inflammation and immunometabolic dysfunction in obesity. Using a model of high fat diet-induced obesity in C57BL/6J female mice, we assessed intestinal paracellular permeability by in vivo and ex vivo assays, and quantitated intestinal macrophages in ileum and colon tissues by multicolour flow cytometry after short (6 weeks), intermediate (12 weeks), and prolonged (18 weeks) diet allocation. We characterized monocyte-derived CD4-TIM4- and CD4+TIM4- macrophages, as well as tissue-resident CD4+TIM4+ macrophages. Diet-induced obesity had tissue- and time-dependent effects on intestinal permeability, as well as monocyte and macrophage numbers, surface marker phenotype, and intracellular production of the cytokines IL-10 and TNF. We found that obese mice had increased paracellular permeability, in particular within the ileum, but this did not elicit recruitment of monocytes, nor a local pro-inflammatory response by monocyte-derived or tissue-resident macrophages, in either the ileum or colon. Proliferation of monocyte-derived and tissue-resident macrophages was also unchanged. Wildtype and TNF-/- littermate mice had similar intestinal permeability and macrophage population characteristics in response to diet-induced obesity. These data are unique from reported effects of diet-induced obesity on macrophages in metabolic tissues, as well as outcomes of acute inflammation within the intestines. These experiments also collectively indicate that TNF does not mediate effects of diet-induced obesity on paracellular permeability or intestinal monocyte-derived and tissue-resident intestinal macrophages in young female mice.
    Keywords:  TNF; female; intestinal macrophages; intestinal permeability; obesity
  21. Front Immunol. 2022 ;13 1073971
      Hypoxia-inducible factor-1α (HIF-1α) is a primary metabolic sensor, and is expressed in different immune cells, such as macrophage, dendritic cell, neutrophil, T cell, and non-immune cells, for instance, synovial fibroblast, and islet β cell. HIF-1α signaling regulates cellular metabolism, triggering the release of inflammatory cytokines and inflammatory cells proliferation. It is known that microenvironment hypoxia, vascular proliferation, and impaired immunological balance are present in autoimmune diseases. To date, HIF-1α is recognized to be overexpressed in several inflammatory autoimmune diseases, such as systemic lupus erythematosus (SLE), rheumatoid arthritis, and function of HIF-1α is dysregulated in these diseases. In this review, we narrate the signaling pathway of HIF-1α and the possible immunopathological roles of HIF-1α in autoimmune diseases. The collected information will provide a theoretical basis for the familiarization and development of new clinical trials and treatment based on HIF-1α and inflammatory autoimmune disorders in the future.
    Keywords:  HIF-1α; autoimmune diseases; immune cell; inflammation; signaling pathway
  22. Cells. 2023 Jan 30. pii: 450. [Epub ahead of print]12(3):
      Glucocorticoids (GCs) are used to treat inflammatory disorders such as multiple sclerosis (MS) by exerting prominent activities in T cells including apoptosis induction and suppression of cytokine production. However, little is known about their impact on energy metabolism, although it is widely accepted that this process is a critical rheostat of T cell activity. We thus tested the hypothesis that GCs control genes and processes involved in nutrient transport and glycolysis. Our experiments revealed that escalating doses of dexamethasone (Dex) repressed energy metabolism in murine and human primary T cells. This effect was mediated by the GC receptor and unrelated to both apoptosis induction and Stat1 activity. In contrast, treatment of human T cells with rapamycin abolished the repression of metabolic gene expression by Dex, unveiling mTOR as a critical target of GC action. A similar phenomenon was observed in MS patients after intravenous methylprednisolon (IVMP) pulse therapy. The expression of metabolic genes was reduced in the peripheral blood T cells of most patients 24 h after GC treatment, an effect that correlated with disease activity. Collectively, our results establish the regulation of T cell energy metabolism by GCs as a new immunomodulatory principle.
    Keywords:  T cells; glucocorticoids; metabolism; multiple sclerosis
  23. Front Immunol. 2022 ;13 1108071
      Mucosal associated invariant T (MAIT) cells are a population of unconventional innate T cells due to their non-MHC restriction and rapid effector responses. MAIT cells can recognise bacterial derived antigens presented on the MHC-like protein via their semi-restricted T cell receptor (TCR). Upon TCR triggering MAIT cells rapidly produce a range of effector molecules including cytokines, lytic granules and chemokines. This rapid and robust effector response makes MAIT cells critical in host responses against many bacterial pathogens. MAIT cells can also respond independent of their TCR via innate cytokines such as interleukin (IL)-18, triggering cytokine production, and are important in anti-viral responses. In addition to their protective role, MAIT cells have been implicated in numerous inflammatory diseases, including metabolic diseases often contributing to the pathogenesis via their robust cytokine production. Effector cells such as MAIT cells require significant amounts of energy to support their potent responses, and the type of nutrients available can dictate the functionality of the cell. Although data on MAIT cell metabolism is just emerging, several recent studies are starting to define the intrinsic metabolic requirements and regulators of MAIT cells. In this review we will outline our current understanding of MAIT cell metabolism, and outline their role in metabolic disease, and how disease-related changes in extrinsic metabolism can alter MAIT cell responses.
    Keywords:  MAIT; diabetes; immunometabolism; metabolic disease; obesity
  24. Cell Host Microbe. 2023 Feb 08. pii: S1931-3128(23)00034-3. [Epub ahead of print]31(2): 173-186
      Metabolites produced by commensal gut microbes impact host health through their recognition by the immune system and their influence on numerous metabolic pathways. Notably, the gut microbiota can both transform and synthesize lipids as well as break down dietary lipids to generate secondary metabolites with host modulatory properties. Although lipids have largely been consigned to structural roles, particularly in cell membranes, recent research has led to an increased appreciation of their signaling activities, with potential impacts on host health and physiology. This review focuses on studies that highlight the functions of bioactive lipids in mammalian physiology, with a special emphasis on immunity and metabolism.
    Keywords:  PUFAs; autoimmune disease; bacteria; cholesterol; diet; inflammation; innate immunity; lipids; metabolism; microbiome; phospholipids; sphingolipids
  25. bioRxiv. 2023 Jan 27. pii: 2023.01.26.525691. [Epub ahead of print]
      The aryl hydrocarbon receptor (AHR) is a ligand activated transcription factor that plays an integral role in homeostatic maintenance by regulating cellular functions such as cellular differentiation, metabolism, barrier function, and immune response. An important but poorly understood class of AHR activators are compounds derived from host and bacterial metabolism of tryptophan. The commensal bacteria of the gut microbiome are major producers of tryptophan metabolites known to activate the AHR, while the host also produces AHR activators through tryptophan metabolism. We used targeted mass spectrometry-based metabolite profiling to determine the presence and metabolic source of these metabolites in the sera of conventional mice, germ-free mice, and humans. Surprisingly, sera concentrations of many tryptophan metabolites are comparable between germ-free and conventional mice. Therefore, many major AHR-activating tryptophan metabolites in mouse sera are produced by the host, despite their presence in feces and mouse cecal contents. AHR activation is rarely studied in the context of a mixture at relevant concentrations, as we present here. The AHR activation potentials of individual and pooled metabolites were explored using cell-based assays, while ligand binding competition assays and ligand docking simulations were used to assess the detected metabolites as AHR agonists. The physiological and biomedical relevance of the identified metabolites was investigated in the context of cell-based models for cancer and rheumatoid arthritis. We present data here that reframe AHR biology to include the presence of ubiquitous tryptophan metabolites, improving our understanding of homeostatic AHR activity and models of AHR-linked diseases.
  26. Vet Microbiol. 2023 Feb 03. pii: S0378-1135(23)00026-3. [Epub ahead of print]279 109674
      The metabolic pathways of central carbon metabolism (CCM), glycolysis and the tricarboxylic acid (TCA) cycle, are important host factors determining the outcome of viral infection. Thus, it is not surprising that viruses easily manipulate CCM for optimized replication. Porcine reproductive and respiratory syndrome virus (PRRSV) is an Arterivirus that has devastated the swine industry worldwide for over 30 years. However, whether PRRSV reprograms CCM is still unclear. In this study, we found that PRRSV infection increased the intensity of cellular uptake of glucose and glutamine, two main carbon sources for mammalian cells. Deprivation of glucose and/or glutamine significantly reduced PRRSV replication; restricted entry of glucose and glutamine into CCM inhibited PRRSV proliferation. We further found that PRRSV infection elevated glycolysis and maintained the TCA cycle flux. Furthermore, preventing the flow of glycolysis or the TCA cycle led to a reduction in PRRSV proliferation. The anaplerotic usage of glutamine in the TCA cycle partially rescued PRRSV growth by replacing glutamine with α-ketoglutarate (α-KG), an intermediate of the TCA cycle. Interestingly, the addition of α-KG in replete medium also promoted PRRSV proliferation. Taken together, these results reveal that PRRSV infection promotes cellular uptake of glucose and glutamine to provide the energy and macromolecules required for PRRSV replication, and optimal PRRSV replication occurs in cells dependent on glycolysis and the TCA cycle.
    Keywords:  Central carbon metabolism (CCM); Glycolysis; Porcine reproductive and respiratory syndrome virus (PRRSV); Tricarboxylic acid (TCA) cycle; α-ketoglutarate (α-KG)
  27. bioRxiv. 2023 Jan 23. pii: 2023.01.23.525260. [Epub ahead of print]
      New non-destructive tools are needed to reliably assess lymphocyte function for immune profiling and adoptive cell therapy. Optical metabolic imaging (OMI) is a label-free method that measures the autofluorescence intensity and lifetime of metabolic cofactors NAD(P)H and FAD to quantify metabolism at a single-cell level. Here, we investigate whether OMI can resolve metabolic changes between human quiescent versus IL4/CD40 activated B cells and IL12/IL15/IL18 activated memory-like NK cells. We found that quiescent B and NK cells were more oxidized compared to activated cells. Additionally, the NAD(P)H mean fluorescence lifetime decreased and the fraction of unbound NAD(P)H increased in the activated B and NK cells compared to quiescent cells. Machine learning classified B cells and NK cells according to activation state (CD69+) based on OMI parameters with up to 93.4% and 92.6% accuracy, respectively. Leveraging our previously published OMI data from activated and quiescent T cells, we found that the NAD(P)H mean fluorescence lifetime increased in NK cells compared to T cells, and further increased in B cells compared to NK cells. Random forest models based on OMI classified lymphocytes according to subtype (B, NK, T cell) with 97.8% accuracy, and according to activation state (quiescent or activated) and subtype (B, NK, T cell) with 90.0% accuracy. Our results show that autofluorescence lifetime imaging can accurately assess lymphocyte activation and subtype in a label-free, non-destructive manner.Teaser: Label-free optical imaging can assess the metabolic state of lymphocytes on a single-cell level in a touch-free system.
  28. Front Oncol. 2023 ;13 1120194
      Introduction: Glutamine deficiency is a well-known feature of the tumor environment. Here we analyzed the impact of glutamine deprivation on human myeloid cell survival and function.Methods: Different types of myeloid cells were cultured in the absence or presence of glutamine and/or with L-methionine-S-sulfoximine (MSO), an irreversible glutamine synthetase (GS) inhibitor. GS expression was analyzed on mRNA and protein level. GS activity and the conversion of glutamate to glutamine by myeloid cells was followed by 13C tracing analyses.
    Results: The absence of extracellular glutamine only slightly affected postmitotic human monocyte to dendritic cell (DC) differentiation, function and survival. Similar results were obtained for monocyte-derived macrophages. In contrast, proliferation of the monocytic leukemia cell line THP-1 was significantly suppressed. While macrophages exhibited high constitutive GS expression, glutamine deprivation induced GS in DC and THP-1. Accordingly, proliferation of THP-1 was rescued by addition of the GS substrate glutamate and 13C tracing analyses revealed conversion of glutamate to glutamine. Supplementation with the GS inhibitor MSO reduced the survival of DC and macrophages and counteracted the proliferation rescue of THP-1 by glutamate.
    Discussion: Our results show that GS supports myeloid cell survival in a glutamine poor environment. Notably, in addition to suppressing proliferation and survival of tumor cells, the blockade of GS also targets immune cells such as DCs and macrophages.
    Keywords:  dendritic cells; glutamate; glutamine; glutamine synthetase; macrophages
  29. Trends Immunol. 2023 Feb 02. pii: S1471-4906(23)00017-0. [Epub ahead of print]
      Despite the emergence of mitochondria as key regulators of innate immunity, the mechanisms underlying the generation and release of immunostimulatory alarmins by stressed mitochondria remains nebulous. We propose that the major mitochondrial alarmin in myeloid cells is oxidized mitochondrial DNA (Ox-mtDNA). Fragmented Ox-mtDNA enters the cytosol where it activates the NLRP3 inflammasome and generates IL-1β, IL-18, and cGAS-STING to induce type I interferons and interferon-stimulated genes. Inflammasome activation further enables the circulatory release of Ox-mtDNA by opening gasdermin D pores. We summarize new data showing that, in addition to being an autoimmune disease biomarker, Ox-mtDNA converts beneficial transient inflammation into long-lasting immunopathology. We discuss how Ox-mtDNA induces short- and long-term immune activation, and highlight its homeostatic and immunopathogenic functions.
    Keywords:  NLRP3 inflammasome; Ox-mtDNA; autoimmunity; cGAS–STING; cell-free DNA; immunopathology; inflammation; stressed mitochondria
  30. J Clin Invest. 2023 Feb 09. pii: e161944. [Epub ahead of print]
      Induction of lipid-laden foamy macrophages is a cellular hallmark of tuberculosis (TB) disease, which involves transformation of infected phagolysomes from a site of killing into a nutrient-rich replicative niche. Here we show that a terpenyl nucleoside shed from Mycobacterium tuberculosis (Mtb), 1-tuberculosinyladenosine (1-TbAd), causes lysosomal maturation arrest and autophagy blockade, leading to lipid storage in M1 macrophages. Pure 1-TbAd, or infection with terpenyl nucleoside-producing Mtb, caused intralysosomal and peribacillary lipid storage patterns that match both the molecules and subcellular locations known in foamy macrophages. Lipidomics showed that 1-TbAd induced storage of triacylglycerides and cholesterylesters, and 1-TbAd increased Mtb growth under conditions of restricted lipid access in macrophages. Further, lipidomics dentified 1-TbAd induced lipid substrates that define Gaucher's disease, Wolman's disease and other inborn lysosomal storage diseases. These data identify genetic and molecular causes of Mtb-induced lysosomal failure, leading to successful testing of an gonist of TRPML1 calcium channels that reverses lipid storage in cells. These data establish the host-directed cellular functions of an orphan effector molecule that promotes survival in macrophages, providing both an upstream cause and detailed picture of lysosome failure in foamy macrophages.
    Keywords:  Infectious disease; Macrophages; Microbiology; Tuberculosis
  31. Cell Death Dis. 2023 Feb 06. 14(2): 86
      Our and other researchers' previous studies found that myeloid-derived suppressor cells (MDSCs) were increased, and these MDSCs, supposed to play immunosuppressive roles, showed significant pro-inflammatory effects in Sjögren's syndrome (SS). However, the key factors and potential mechanisms leading MDSCs to be inflammatory remain unclear. In this study, we found that MDSCs from SS patients were positively correlated with the percentages of Th17 cells, disease activity and serum autoantibodies, and showed higher levels of Fc gamma receptor (FcγR) IIIA and glycolysis. Most importantly, SS MDSCs or heat-aggregated IgG (HAIG)-treated MDSCs down-regulated Th1/Th2 ratio and up-regulated Th17/Treg ratio, which could be obviously rescued by IgG monomer or glycolysis inhibitor 2-DG. As well, the levels of FcγRIV and glycolysis in MDSCs and the ratio of Th17/Treg were increased, and the ratio of Th1/Th2 was decreased in SS-like NOD mice. Our study indicated that MDSCs showed pro-inflammatory phenotypes by disturbing CD4+ T-cell balances in SS. The pro-inflammatory effects of MDSCs might be directly linked to the enhanced glycolysis mediated by FcγRIIIA activation.
  32. Nat Commun. 2023 Feb 06. 14(1): 642
      Pathogenic viral infections represent a major challenge to human health. Host immune responses to respiratory viruses are closely associated with microbiome and metabolism via the gut-lung axis. It has been known that host defense against influenza A virus (IAV) involves activation of the NLRP3 inflammasome, however, mechanisms behind the protective function of NLRP3 are not fully known. Here we show that an isolated bacterial strain, Bifidobacterium pseudolongum NjM1, enriched in the gut microbiota of Nlrp3-/- mice, protects wild-type but not Nlrp3 deficient mice against IAV infection. This effect depends on the enhanced production of type I interferon (IFN-I) mediated by NjM1-derived acetate. Application of exogenous acetate reproduces the protective effect of NjM1. Mechanistically, NLRP3 bridges GPR43 and MAVS, and promotes the oligomerization and signalling of MAVS; while acetate enhances MAVS aggregation upon GPR43 engagement, leading to elevated IFN-I production. Thus, our data support a model of NLRP3 mediating enhanced induction of IFN-I via acetate-producing bacterium and suggest that the acetate-GPR43-NLRP3-MAVS-IFN-I signalling axis is a potential therapeutic target against respiratory viral infections.
  33. Front Immunol. 2022 ;13 1113348
      G-protein coupled receptors (GPCR) regulate 3',5'-cyclic adenosine monophosphate (cAMP) levels in T cells. cAMP as ubiquitous second messenger is crucial for adequate physiology of T cells by mediating effector T cell (Teff) function as well as regulatory T cell (Treg)-mediated immunosuppression. Several GPCRs have been identified to be crucial for Teff and Treg function. However, the role of the orphan, constitutively active Gs-coupled GPCR GPR52 is unknown. Here we show that GPR52 regulates cAMP levels in T cells but does not affect T cell function. We found that stimulation of transfected HEK cells or primary T cells with a GPR52 agonist results in a rise of intracellular cAMP. However, neither Gpr52 deficiency nor pharmacological modulation of GPR52 by antagonists or agonists affected T cell activation, differentiation, and proliferation or Treg-mediated immunosuppression. Moreover, Gpr52 deletion did not modify the clinical disease course of experimental autoimmune encephalomyelitis (EAE). Our results demonstrate that a modulation of cAMP levels in T cells does not inevitably result in altered T cell function. While we could not identify an obvious role of GPR52 in in vitro T cell assays and in vivo CNS autoimmunity, it might regulate T cell function in a different context or affect the function of other GPR52-expressing cells.
    Keywords:  FRET; GPCR; T cells; cAMP; experimental autoimmune encephalomyelitis; multiple sclerosis
  34. Proc Natl Acad Sci U S A. 2023 Feb 14. 120(7): e2217673120
      Biallelic mutations in the glucocerebrosidase (GBA1) gene cause Gaucher disease, characterized by lysosomal accumulation of glucosylceramide and glucosylsphingosine in macrophages. Gaucher and other lysosomal diseases occur with high frequency in Ashkenazi Jews. It has been proposed that the underlying mutations confer a selective advantage, in particular conferring protection against tuberculosis. Here, using a zebrafish Gaucher disease model, we find that the mutation GBA1 N370S, predominant among Ashkenazi Jews, increases resistance to tuberculosis through the microbicidal activity of glucosylsphingosine in macrophage lysosomes. Consistent with lysosomal accumulation occurring only in homozygotes, heterozygotes remain susceptible to tuberculosis. Thus, our findings reveal a mechanistic basis for protection against tuberculosis by GBA1 N370S and provide biological plausibility for its selection if the relatively mild deleterious effects in homozygotes were offset by significant protection against tuberculosis, a rampant killer of the young in Europe through the Middle Ages into the 19th century.
    Keywords:  Gaucher disease; lysosomal glucosylsphingosine; macrophages; tuberculosis resistance; zebrafish
  35. Nat Commun. 2023 Feb 04. 14(1): 611
      Stimulator of interferon genes (STING) is an intracellular sensor of cyclic di-nucleotides involved in the innate immune response against pathogen- or self-derived DNA. STING trafficking is tightly linked to its function, and its dysregulation can lead to disease. Here, we systematically characterize genes regulating STING trafficking and examine their impact on STING-mediated responses. Using proximity-ligation proteomics and genetic screens, we demonstrate that an endosomal sorting complex required for transport (ESCRT) complex containing HGS, VPS37A and UBAP1 promotes STING degradation, thereby terminating STING-mediated signaling. Mechanistically, STING oligomerization increases its ubiquitination by UBE2N, forming a platform for ESCRT recruitment at the endosome that terminates STING signaling via sorting in the lysosome. Finally, we show that expression of a UBAP1 mutant identified in patients with hereditary spastic paraplegia and associated with disrupted ESCRT function, increases steady-state STING-dependent type I IFN responses in healthy primary monocyte-derived dendritic cells and fibroblasts. Based on these findings, we propose that STING is subject to a tonic degradative flux and that the ESCRT complex acts as a homeostatic regulator of STING signaling.
  36. Front Microbiol. 2023 ;14 1091807
      Porcine epidemic diarrhea virus (PEDV) is a threat to the health of newborn piglets and has a significant impact on the swine industry. Short-chain fatty acids (SCFAs) are gut microbial metabolites that regulate intestinal function through different mechanisms to enhance the intestinal barrier and immune function. In this study, we aimed to determine whether butyrate displayed a better effect than other SCFAs on limiting PEDV replication in porcine intestinal epithelial cells. Mechanistically, butyrate treatment activated the interferon (IFN) response and interferon-stimulated gene (ISG) expression. Further experiments showed that inhibition of GPR43 (free fatty acid receptor 2) in intestinal epithelial cells increased virus infection and reduced antiviral effects through IFN λ response. Our findings revealed that butyrate exerts its antiviral effects by inducing GPR43-mediated IFN production in intestinal epithelial cells.
    Keywords:  GPR43; IFN-III; butyrate; intestinal epithelial cells; porcine epidemic diarrhea virus