bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2022–11–20
37 papers selected by
Dylan Ryan, University of Cambridge



  1. Nat Metab. 2022 Nov 14.
      The tumour microenvironment possesses mechanisms that suppress anti-tumour immunity. Itaconate is a metabolite produced from the Krebs cycle intermediate cis-aconitate by the activity of immune-responsive gene 1 (IRG1). While it is known to be immune modulatory, the role of itaconate in anti-tumour immunity is unclear. Here, we demonstrate that myeloid-derived suppressor cells (MDSCs) secrete itaconate that can be taken up by CD8+ T cells and suppress their proliferation, cytokine production and cytolytic activity. Metabolite profiling, stable-isotope tracing and metabolite supplementation studies indicated that itaconate suppressed the biosynthesis of aspartate and serine/glycine in CD8+ T cells to attenuate their proliferation and function. Host deletion of Irg1 in female mice bearing allografted tumours resulted in decreased tumour growth, inhibited the immune-suppressive activities of MDSCs, promoted anti-tumour immunity of CD8+ T cells and enhanced the anti-tumour activity of anti-PD-1 antibody treatment. Furthermore, we found a significant negative correlation between IRG1 expression and response to PD-1 immune checkpoint blockade in patients with melanoma. Our findings not only reveal a previously unknown role of itaconate as an immune checkpoint metabolite secreted from MDSCs to suppress CD8+ T cells, but also establish IRG1 as a myeloid-selective target in immunometabolism whose inhibition promotes anti-tumour immunity and enhances the efficacy of immune checkpoint protein blockade.
    DOI:  https://doi.org/10.1038/s42255-022-00676-9
  2. Sci Immunol. 2022 Nov 25. 7(77): eabm8182
      T cell proliferation and cytokine production are bioenergetically and biosynthetically costly. The inability to meet these metabolic demands results in altered differentiation, accompanied by impaired effector function, and attrition of the immune response. Interleukin-17-producing CD4 T cells (TH17s) are mediators of host defense, autoimmunity, and antitumor immunity in the setting of adoptive T cell therapy. TH17s are long-lived cells that require mitochondrial oxidative phosphorylation (OXPHOS) for effector function in vivo. Considering that TH17s polarized under standardized culture conditions are predominately glycolytic, little is known about how OXPHOS regulates TH17 processes, such as their ability to persist and thus contribute to protracted immune responses. Here, we modified standardized culture medium and identified a culture system that reliably induces OXPHOS dependence in TH17s. We found that TH17s cultured under OXPHOS conditions metabolically resembled their in vivo counterparts, whereas glycolytic cultures were dissimilar. OXPHOS TH17s exhibited increased mitochondrial fitness, glutamine anaplerosis, and an antiapoptotic phenotype marked by high BCL-XL and low BIM. Limited mitophagy, mediated by mitochondrial fusion regulator OPA-1, was critical to apoptotic resistance in OXPHOS TH17s. By contrast, glycolytic TH17s exhibited more mitophagy and an imbalance in BCL-XL to BIM, thereby priming them for apoptosis. In addition, through adoptive transfer experiments, we demonstrated that OXPHOS protected TH17s from apoptosis while enhancing their persistence in the periphery and tumor microenvironment in a murine model of melanoma. Together, our work demonstrates how metabolism regulates TH17 cell fate and highlights the potential for therapies that target OXPHOS in TH17-driven diseases.
    DOI:  https://doi.org/10.1126/sciimmunol.abm8182
  3. Cell Rep. 2022 Nov 15. pii: S2211-1247(22)01542-X. [Epub ahead of print]41(7): 111668
      Fatty acids (FAs) are widely involved in diverse biological functions. In mice with myeloid-specific deletion of fatty acid-binding protein 5 (FABP5), OVA-induced allergic airway inflammation (AAI) is significantly exacerbated by increasing alternatively activated macrophages (M2). Fabp5 deficiency increases IL-4-induced M2 in vitro. In macrophages, Fabp5 deletion causes significant accumulation of free long-chain unsaturated FAs, such as oleic acid, but does not cause detectable changes to other groups of FAs. Interestingly, excessive uptake of oleic acid aggravates AAI pathogenesis, with increased M2 polarization in bronchoalveolar lavage fluid. Informatics and mechanistic studies indicate that Fabp5 deficiency may reprogram metabolic pathways by enhancing FA β oxidation, tricarboxylic acid cycle, and oxidative phosphorylation, in addition to producing more ATP through activation of the PPARγ signaling pathway, reshaping macrophages in favor of M2 polarization. These results emphasize the importance of FABP5 and oleic acid in AAI, suggesting preventive and therapeutic strategies for allergic asthma.
    Keywords:  CP: Immunology; FABP5; M2 macrophages; PPARγ; allergic airway inflammation; long-chain unsaturated fatty acids
    DOI:  https://doi.org/10.1016/j.celrep.2022.111668
  4. Cell Rep. 2022 Nov 15. pii: S2211-1247(22)01510-8. [Epub ahead of print]41(7): 111639
      T cells dynamically rewire their metabolism during an immune response. We applied single-cell RNA sequencing to CD8+ T cells activated and differentiated in vitro in physiological medium to resolve these metabolic dynamics. We identify a differential time-dependent reliance of activating T cells on the synthesis versus uptake of various non-essential amino acids, which we corroborate with functional assays. We also identify metabolic genes that potentially dictate the outcome of T cell differentiation, by ranking them based on their expression dynamics. Among them, we find asparagine synthetase (Asns), whose expression peaks for effector T cells and decays toward memory formation. Disrupting these expression dynamics by ASNS overexpression promotes an effector phenotype, enhancing the anti-tumor response of adoptively transferred CD8+ T cells in a mouse melanoma model. We thus provide a resource of dynamic expression changes during CD8+ T cell activation and differentiation, and identify ASNS expression dynamics as a modulator of CD8+ T cell differentiation.
    Keywords:  ASNS; CD8(+) T cells; CP: Immunology; T-cell activation; T-cell differentiation; asparagine; dynamics; immunology; metabolism; physiological media; scRNA-seq
    DOI:  https://doi.org/10.1016/j.celrep.2022.111639
  5. Sci Adv. 2022 Nov 18. 8(46): eabq0615
      Chronic exposure to airborne carbon black ultrafine (nCB) particles generated from incomplete combustion of organic matter drives IL-17A-dependent emphysema. However, whether and how they alter the immune responses to lung cancer remains unknown. Here, we show that exposure to nCB particles increased PD-L1+ PD-L2+ CD206+ antigen-presenting cells (APCs), exhausted T cells, and Treg cells. Lung macrophages that harbored nCB particles showed selective mitochondrial structure damage and decreased oxidative respiration. Lung macrophages sustained the HIF1α axis that increased glycolysis and lactate production, culminating in an immunosuppressive microenvironment in multiple mouse models of non-small cell lung cancers. Adoptive transfer of lung APCs from nCB-exposed wild type to susceptible mice increased tumor incidence and caused early metastasis. Our findings show that nCB exposure metabolically rewires lung macrophages to promote immunosuppression and accelerates the development of lung cancer.
    DOI:  https://doi.org/10.1126/sciadv.abq0615
  6. Chin Med J (Engl). 2022 Nov 17.
       ABSTRACT: Tumor-associated macrophages (TAMs) are an essential proportion of tumor-infiltrating immune cells in the tumor microenvironment (TME) and have immunosuppressive functions. The high plasticity and corresponding phenotypic transformation of TAMs facilitate oncogenesis and progression, and suppress antineoplastic responses. Due to the uncontrolled proliferation of tumor cells, metabolism homeostasis is regulated, leading to a series of alterations in the metabolite profiles in the TME, which have a commensurate influence on immune cells. Metabolic reprogramming of the TME has a profound impact on the polarization and function of TAMs, and can alter their metabolic profiles. TAMs undergo a series of metabolic reprogramming processes, involving glucose, lipid, and amino acid metabolism, and other metabolic pathways, which terminally promote the development of the immunosuppressive phenotype. TAMs express a pro-tumor phenotype by increasing glycolysis, fatty acid oxidation, cholesterol efflux, and arginine, tryptophan, glutamate, and glutamine metabolism. Previous studies on the metabolism of TAMs demonstrated that metabolic reprogramming has intimate crosstalk with anti-tumor or pro-tumor phenotypes and is crucial for the function of TAMs themselves. Targeting metabolism-related pathways is emerging as a promising therapeutic modality because of the massive metabolic remodeling that occurs in malignant cells and TAMs. Evidence reveals that the efficacy of immune checkpoint inhibitors is improved when combined with therapeutic strategies targeting metabolism-related pathways. In-depth research on metabolic reprogramming and potential therapeutic targets provides more options for anti-tumor treatment and creates new directions for the development of new immunotherapy methods. In this review, we elucidate the metabolic reprogramming of TAMs and explore how they sustain immunosuppressive phenotypes to provide a perspective for potential metabolic therapies.
    DOI:  https://doi.org/10.1097/CM9.0000000000002426
  7. Cytokine Growth Factor Rev. 2022 Nov 07. pii: S1359-6101(22)00079-X. [Epub ahead of print]
      Metabolites of glycolytic metabolism have been identified as signaling molecules and regulators of gene expression, in addition to their basic function as major energy and biosynthetic source. Immune cells reprogram metabolic pathways to cater to energy and biosynthesis demands upon activation. Most lymphocytes, including inflammatory M1 macrophages, mainly shift from oxidative phosphorylation to glycolysis, whereas regulatory T cells and M2 macrophages preferentially use the tricarboxylic acid (TCA) cycle and have reduced glycolysis. Recent studies have revealed the "non-metabolic" signaling functions of intermediates of the mitochondrial pathway and glycolysis. The roles of citrate, succinate and itaconate in immune response, including post-translational modifications of proteins and macrophages activation, have been highlighted. As an end product of glycolysis, lactate has received considerable interest from researchers. In this review, we specifically focused on studies exploring the integration of lactate into immune cell biology and associated pathologies. Lactate can act as a double-edged sword. On one hand, activated immune cells prefer to use lactate to support their function. On the other hand, accumulated lactate in the tissue microenvironment acts as a signaling molecule that restricts immune cell function. Recently, a novel epigenetic change mediated by histone lysine lactylation has been proposed. The burgeoning researches support the idea that histone lactylation participates in diverse cellular events. This review describes glycolytic metabolism, including the immunoregulation of metabolites of the TCA cycle and lactate. These latest findings strengthen our understanding on tumor and chronic inflammatory diseases and offer potential therapeutic options.
    Keywords:  Glucose metabolism; Immune cell function; Lactate; Lactylation; TCA cycle
    DOI:  https://doi.org/10.1016/j.cytogfr.2022.11.001
  8. Trends Immunol. 2022 Nov 09. pii: S1471-4906(22)00211-3. [Epub ahead of print]
      Macrophages undergo profound metabolic reprogramming upon sensing infectious and sterile stimuli. This metabolic shift supports and regulates essential innate immune functions, including activation of the NLRP3 inflammasome. Within distinct metabolic networks, key enzymes play pivotal roles to control flux restraining detrimental inflammasome signaling. However, depending on the metabolic cues, specific enzymes and metabolites result in inflammasome activation outcomes which contrast other metabolic steps in the pathway. We posit that understanding which metabolic steps commit to discrete inflammasome fates will broaden our understanding of metabolic checkpoints to maintain homeostasis and offer better therapeutic options in human disease.
    Keywords:  NLRP3; TCA cycle; glycolysis; inflammasome; lipids; metabolism
    DOI:  https://doi.org/10.1016/j.it.2022.10.003
  9. Rheumatology (Oxford). 2022 Nov 18. pii: keac640. [Epub ahead of print]
       OBJECTIVES: Myeloid cells with a monocyte/macrophage phenotype are present in large numbers in the Rheumatoid Arthritis (RA) joint, significantly contributing to disease, however distinct macrophage functions have yet to be elucidated. This study investigates the metabolic activity of infiltrating polarised macrophages and their impact on pro-inflammatory responses in RA.
    METHODS: CD14+ monocytes from RA and HC bloods were isolated and examined ex-vivo or following differentiation into 'M1/M2' macrophages. Inflammatory responses and metabolic analysis +/- specific inhibitors were quantified by RT-PCR, western-blot, Seahorse-XFe-technology, phagocytosis assays and transmission electron microscopy along with RNA-seq transcriptomic analysis.
    RESULTS: Circulating RA monocytes are hyper-inflammatory upon stimulation, with significantly higher expression of key cytokines compared with HC (p< 0.05) a phenotype which is maintained upon differentiation into mature ex vivo polarised macrophages. This induction in pro-inflammatory mechanisms is paralleled by cellular bioenergetic changes. RA macrophages are highly metabolic, with a robust boost in both oxidative phosphorylation and glycolysis in RA along with altered mitochondrial morphology compared with healthy control. RNA-sequencing analysis revealed divergent transcriptional variance between pro and anti-inflammatory RA macrophages revealing a role for STAT3 and NAMPT in driving macrophage activation states. STAT3 and NAMPT inhibition results in significant decrease in pro-inflammatory gene expression observed in RA macrophages. Interestingly NAMPT inhibition specifically, restores macrophage phagocytic function and results in reciprocal STAT3 inhibition linking these two signalling pathways.
    CONCLUSION: This study demonstrates a unique inflammatory and metabolic phenotype of RA monocyte-derived macrophages and identifies a key role for NAMPT and STAT3 signalling in regulating this phenotype.
    Keywords:  Bioenergetics; Macrophage; Monocyte; NAMPT; Rheumatoid Arthritis; STAT3
    DOI:  https://doi.org/10.1093/rheumatology/keac640
  10. Sci Rep. 2022 Nov 16. 12(1): 19657
      The ZFP36 family of RNA-binding proteins acts post-transcriptionally to repress translation and promote RNA decay. Studies of genes and pathways regulated by the ZFP36 family in CD4+ T cells have focussed largely on cytokines, but their impact on metabolic reprogramming and differentiation is unclear. Using CD4+ T cells lacking Zfp36 and Zfp36l1, we combined the quantification of mRNA transcription, stability, abundance and translation with crosslinking immunoprecipitation and metabolic profiling to determine how they regulate T cell metabolism and differentiation. Our results suggest that ZFP36 and ZFP36L1 act directly to limit the expression of genes driving anabolic processes by two distinct routes: by targeting transcription factors and by targeting transcripts encoding rate-limiting enzymes. These enzymes span numerous metabolic pathways including glycolysis, one-carbon metabolism and glutaminolysis. Direct binding and repression of transcripts encoding glutamine transporter SLC38A2 correlated with increased cellular glutamine content in ZFP36/ZFP36L1-deficient T cells. Increased conversion of glutamine to α-ketoglutarate in these cells was consistent with direct binding of ZFP36/ZFP36L1 to Gls (encoding glutaminase) and Glud1 (encoding glutamate dehydrogenase). We propose that ZFP36 and ZFP36L1 as well as glutamine and α-ketoglutarate are limiting factors for the acquisition of the cytotoxic CD4+ T cell fate. Our data implicate ZFP36 and ZFP36L1 in limiting glutamine anaplerosis and differentiation of activated CD4+ T cells, likely mediated by direct binding to transcripts of critical genes that drive these processes.
    DOI:  https://doi.org/10.1038/s41598-022-24132-6
  11. Biomed Pharmacother. 2022 Nov 14. pii: S0753-3322(22)01381-6. [Epub ahead of print]157 113992
      Abnormal intracellular metabolism not only provides nutrition for tumor occurrence and development, but also sensitizes the function of various immune cells in the immune microenvironment to promote tumor immune escape. This review discusses the emerging role of immune cells in the progress of pancreatic cancer, acrossing metabolic reprogramming and key metabolic pathways present in different immune cell types. At present, the hotspots of metabolic reprogramming of immune cells in pancreatic cancer progression mainly focuses on glucose metabolism, lipid metabolism, tricarboxylic acid cycle and amino acid metabolism, which affect the function of anti-tumor immune cells and immunosuppressive cells in the microenvironment, such as macrophages, dendritic cells, T cells, myeloid-derived suppressor cells, neutrophils and B cells by a series of key metabolic signaling pathways, such as PI3K/AKT, mTOR, AMPK, HIF-1α, c-Myc and p53. Drugs that target the tumor metabolism pathways for clinical treatment of pancreatic cancer are also systematically elaborated, which may constitute food for others' projects involved in clinical anti-cancer research.
    Keywords:  Immune cells; Immunotherapy; Metabolic reprogramming; Pancreatic cancer
    DOI:  https://doi.org/10.1016/j.biopha.2022.113992
  12. Biochem Pharmacol. 2022 Nov 15. pii: S0006-2952(22)00442-7. [Epub ahead of print] 115348
      We recently found that the G protein coupled receptor GPR101 mediates the phagocyte-directed pro-resolving activities of RvD5n-3 DPA (n-3 docosapentaenoic acid-derived Resolvin D5). Herein, we investigated the endogenous role of this pro-resolving receptor in modulating macrophage biology using a novel mouse line where the expression of Gpr101 was conditionally deleted in macrophages (MacGpr101KO). Peritoneal macrophages obtained from naïve MacGpr101KO mice displayed a marked shift in the expression of phenotypic and activation markers, including the Interleukin (IL)-10 and IL-23 receptors. Loss of Gpr101 on macrophages was also associated with a significant disruption in their cellular metabolism and a decreased ability to migrate towards the chemoattractant Mcp-1. The alterations in macrophage phenotype observed in Gpr101 deficient macrophages were maintained following inflammatory challenge. This was linked with an increased inflammatory response in the Gpr101 deficient animals and a reduced ability of phagocytes, including macrophages, to clear bacteria. Loss of Gpr101 on macrophages also disrupted host pro-resolving responses following zymosan challenge with MacGpr101KO mice exhibiting significantly higher neutrophil numbers and a delay in the resolution interval when compared with control mice. These observations were linked with a marked dysregulation in peritoneal lipid mediator concentrations in Gpr101 deficient mice, with a downregulation of pro-resolving mediators including MaR2n-3 DPA, Resolvin (Rv) D3 and RvE3. Together these findings identify Gpr101 as a novel regulator of both macrophage phenotype and function, modulating key biological activities in both limiting the propagation of inflammation and expediting its resolution.
    Keywords:  GPCR; Macrophages; acute inflammation; innate immunity; resolution; specialized pro-resolving mediators
    DOI:  https://doi.org/10.1016/j.bcp.2022.115348
  13. Acta Pharm Sin B. 2022 Nov;12(11): 4180-4192
      Glycolytic metabolism enzymes have been implicated in the immunometabolism field through changes in metabolic status. PGK1 is a catalytic enzyme in the glycolytic pathway. Here, we set up a high-throughput screen platform to identify PGK1 inhibitors. DC-PGKI is an ATP-competitive inhibitor of PGK1 with an affinity of K d = 99.08 nmol/L. DC-PGKI stabilizes PGK1 in vitro and in vivo, and suppresses both glycolytic activity and the kinase function of PGK1. In addition, DC-PGKI unveils that PGK1 regulates production of IL-1β and IL-6 in LPS-stimulated macrophages. Mechanistically, inhibition of PGK1 with DC-PGKI results in NRF2 (nuclear factor-erythroid factor 2-related factor 2, NFE2L2) accumulation, then NRF2 translocates to the nucleus and binds to the proximity region of Il-1β and Il-6 genes, and inhibits LPS-induced expression of these genes. DC-PGKI ameliorates colitis in the dextran sulfate sodium (DSS)-induced colitis mouse model. These data support PGK1 as a regulator of macrophages and suggest potential utility of PGK1 inhibitors in the treatment of inflammatory bowel disease.
    Keywords:  Glycolysis; Inflammation; Macrophages; NRF2; Phosphoglycerate kinase1
    DOI:  https://doi.org/10.1016/j.apsb.2022.05.012
  14. Chem Sci. 2022 Nov 02. 13(42): 12445-12460
      Multidrug-resistant bacterial pathogens pose an increasing threat to human health. Certain bacteria, such as Staphylococcus aureus, are able to survive within professional phagocytes to escape the bactericidal effects of antibiotics and evade killing by immune cells, potentially leading to chronic or persistent infections. By investigating the macrophage response to S. aureus infection, we may devise a strategy to prime the innate immune system to eliminate the infected bacteria. Here we applied untargeted tandem mass spectrometry to characterize the lipidome alteration in S. aureus infected J774A.1 macrophage cells at multiple time points. Linoleic acid (LA) metabolism and sphingolipid metabolism pathways were found to be two major perturbed pathways upon S. aureus infection. The subsequent validation has shown that sphingolipid metabolism suppression impaired macrophage phagocytosis and enhanced intracellular bacteria survival. Meanwhile LA metabolism activation significantly reduced intracellular S. aureus survival without affecting the phagocytic capacity of the macrophage. Furthermore, exogenous LA treatment also exhibited significant bacterial load reduction in multiple organs in a mouse bacteremia model. Two mechanisms are proposed to be involved in this progress: exogenous LA supplement increases downstream metabolites that partially contribute to LA's capacity of intracellular bacteria-killing and LA induces intracellular reactive oxygen species (ROS) generation through an electron transport chain pathway in multiple immune cell lines, which further increases the capacity of killing intracellular bacteria. Collectively, our findings not only have characterized specific lipid pathways associated with the function of macrophages but also demonstrated that exogenous LA addition may activate lipid modulator-mediated innate immunity as a potential therapy for bacterial infections.
    DOI:  https://doi.org/10.1039/d2sc04307f
  15. Front Immunol. 2022 ;13 1001956
      Many invasive micro-organisms produce 'quorum sensor' molecules which regulate colony expansion and may modulate host immune responses. We have examined the ability of Pseudomonas Quorum Sensor (PQS) to influence cytokine expression under conditions of inflammatory stress. The administration of PQS in vivo to mice with collagen-induced arthritis (CIA) increased the severity of disease. Blood and inflamed paws from treated mice had fewer regulatory T cells (Tregs) but normal numbers of Th17 cells. However, PQS (1μM) treatment of antigen-stimulated lymph node cells from collagen-immunised mice in vitro inhibited the differentiation of CD4+IFNγ+ cells, with less effect on CD4+IL-17+ cells and no change in CD4+FoxP3+Tregs. PQS also inhibited T cell activation by anti-CD3/anti-CD28 antibodies. PQS reduced murine macrophage polarisation and inhibited expression of IL1B and IL6 genes in murine macrophages and human THP-1 cells. In human monocyte-derived macrophages, IDO1 gene, protein and enzyme activity were all inhibited by exposure to PQS. TNF gene expression was inhibited in THP-1 cells but not murine macrophages, while LPS-induced TNF protein release was increased by high PQS concentrations. PQS is known to have iron scavenging activity and its suppression of cytokine release was abrogated by iron supplementation. Unexpectedly, PQS decreased the expression of indoleamine-2, 3-dioxygenase genes (IDO1 and IDO2), IDO1 protein expression and enzyme activity in mouse and human macrophages. This is consistent with evidence that IDO1 inhibition or deletion exacerbates arthritis, while kynurenine reduces its severity. It is suggested that the inhibition of IDO1 and cytokine expression may contribute to the quorum sensor and invasive actions of PQS.
    Keywords:  Indoleamine 2 3-dioxygenase (IDO); PQS signaling; Th17 cells and Treg cells; arthritis (including rheumatoid arthritis); kynurenine (KYN); quorum sensing (QS); regulatory T (Treg) cells; tolerance
    DOI:  https://doi.org/10.3389/fimmu.2022.1001956
  16. Immune Netw. 2022 Oct;22(5): e39
      RNA metabolism plays a central role in regulating of T cell-mediated immunity. RNA processing, modifications, and regulations of RNA decay influence the tight and rapid regulation of gene expression during T cell phase transition. Thymic selection, quiescence maintenance, activation, differentiation, and effector functions of T cells are dependent on selective RNA modulations. Recent technical improvements have unveiled the complex crosstalk between RNAs and T cells. Moreover, resting T cells contain large amounts of untranslated mRNAs, implying that the regulation of RNA metabolism might be a key step in controlling gene expression. Considering the immunological significance of T cells for disease treatment, an understanding of RNA metabolism in T cells could provide new directions in harnessing T cells for therapeutic implications.
    Keywords:  Cellular; Immunity; RNA; RNA metabolism; T-lymphocytes
    DOI:  https://doi.org/10.4110/in.2022.22.e39
  17. iScience. 2022 Nov 18. 25(11): 105437
      Ischemic stroke critically impacts neurovascular homeostasis, potentially resulting in neurological disorders. However, the mechanisms through which stroke-induced inflammation modifies the molecular and metabolic circuits, particularly in ileal epithelial cells (iECs), currently remain elusive. Using multiomic approaches, we illustrated that stroke impaired the ileal microbiome and associated metabolites, leading to increased inflammatory signals and altered metabolites, potentially deteriorating the iEC homeostasis. Bulk transcriptomic and metabolomic profiling demonstrated that stroke enhanced fatty acid oxidation while reducing the tricarboxylic acid (TCA) cycle in iECs within the first day after stroke. Intriguingly, single-cell RNA sequencing analysis revealed that stroke dysregulated cell-type-specific gene responses within iECs and reduced frequencies of goblet and tuft cells. Additionally, stroke augmented interleukin-17A+ γδ T cells but decreased CD4+ T cells in the ileum. Collectively, our findings provide a comprehensive overview of stroke-induced intestinal dysbiosis and unveil responsive gene programming within iECs with implications for disease development.
    Keywords:  Biological sciences; Immunology; Metabolomics; Transcriptomics
    DOI:  https://doi.org/10.1016/j.isci.2022.105437
  18. Vet Res. 2022 Nov 12. 53(1): 90
      Foamy macrophages containing prominent cytoplasmic lipid droplets (LDs) are found in a variety of infectious diseases. However, their role in Streptococcus uberis-induced mastitis is unknown. Herein, we report that S. uberis infection enhances the fatty acid synthesis pathway in macrophages, resulting in a sharp increase in LD levels, accompanied by a significantly enhanced inflammatory response. This process is mediated by the involvement of fatty acid binding protein 4 (FABP4), a subtype of the fatty acid-binding protein family that plays critical roles in metabolism and inflammation. In addition, FABP4 siRNA inhibitor cell models showed that the deposition of LDs decreased, and the mRNA expression of Tnf, Il1b and Il6 was significantly downregulated after gene silencing. As a result, the bacterial load in macrophages increased. Taken together, these data demonstrate that macrophage LD formation is a host-driven component of the immune response to S. uberis. FABP4 contributes to promoting inflammation via LDs, which should be considered a new target for drug development to treat infections.
    Keywords:  FABP4; Streptococcus uberis; bovine mastitis; inflammation; lipid droplets
    DOI:  https://doi.org/10.1186/s13567-022-01114-0
  19. FASEB J. 2022 Dec;36(12): e22650
      Hepatitis C virus (HCV) adopts several immune evasion mechanisms such as interfering with innate immunity or promoting T-cell exhaustion. However, the recent direct-antiviral agents (DAAs) rapidly eliminate the virus, and the repercussions in terms of immune system balance are unknown. Here we compared the PBMCs transcriptomic profile of patients with HCV chronic infection at baseline (T0) and 12 weeks after the end of the therapy (SVR12) with DAAs. 3862 genes were differently modulated, identifying oxidative phosphorylation as the top canonical pathway differentially activated. Therefore, we dissected PBMCs bioenergetic profile by analyzing mitochondrial respiration and glycolysis at 4 timepoints: T0, 4 weeks of therapy, end of therapy (EoT), and SVR12. Maximal and reserve respiratory capacity considerably increased at EoT, persisting until SVR12. Notably, over time a significant increase was observed in respiratory chain (RC) complexes protein levels and the enzymatic activity of complexes I, II, and IV. Mitochondrial-DNA integrity improved over time, and the expression of mitochondrial biogenesis key regulators such as TFAM, Nrf-1, and PPARGC1A significantly increased at SVR12; hence, RC complexes synthesis and mitochondrial respiration were supported after treatment. HCV clearance with DAAS profoundly changed PBMCs bioenergetic profile, suggesting the immunometabolism study as a new approach to the understanding of viral immune evasion mechanisms and host adaptations during infections and therapies.
    Keywords:  HCV; direct antiviral agents; hepatitis; metabolism; mitochondria
    DOI:  https://doi.org/10.1096/fj.202200629R
  20. Front Oncol. 2022 ;12 1024789
      The tumor immune microenvironment has been a research hot spot in recent years. The cytokines and metabolites in the microenvironment can promote the occurrence and development of tumor in various ways and help tumor cells get rid of the surveillance of the immune system and complete immune escape. Many studies have shown that the existence of tumor microenvironment is an important reason for the failure of immunotherapy. The impact of the tumor microenvironment on tumor is a systematic study. The current research on this aspect may be only the tip of the iceberg, and a relative lack of integrity, may be related to the heterogeneity of tumor. This review mainly discusses the current status of glucose metabolism and lipid metabolism in the tumor microenvironment, including the phenotype of glucose metabolism and lipid metabolism in the microenvironment; the effects of these metabolic methods and their metabolites on three important immune cells Impact: regulatory T cells (Tregs), tumor-associated macrophages (TAM), natural killer cells (NK cells); and the impact of metabolism in the targeted microenvironment on immunotherapy. At the end of this article,the potential relationship between Ferroptosis and the tumor microenvironment in recent years is also briefly described.
    Keywords:  NK cells; Tregs; glucose metabolism; lipid metabolism; macrophages; tumor microenvironment
    DOI:  https://doi.org/10.3389/fonc.2022.1024789
  21. Atherosclerosis. 2022 Nov 10. pii: S0021-9150(22)01498-8. [Epub ahead of print]
      
    Keywords:  Angiopoietin-like 3; Atherosclerosis; Lipid metabolism; Regulatory T cells; Therapy
    DOI:  https://doi.org/10.1016/j.atherosclerosis.2022.11.002
  22. Mol Metab. 2022 Nov 15. pii: S2212-8778(22)00206-X. [Epub ahead of print] 101637
       OBJECTIVE: Physical activity has been shown to reduce the risk of CVD mortality in large-cohort longitudinal studies; however, the mechanisms underpinning the beneficial effects of exercise remain incompletely understood. Emerging data suggest that the risk reducing effect of exercise extends beyond changes in traditional CVD risk factors alone and involves alterations in immunity and reductions in inflammatory mediator production. Our study aimed to determine whether exercise-enhanced production of proresolving lipid mediators contribute to alterations in macrophage intermediary metabolism, which may contribute to the anti-inflammatory effects of exercise.
    METHODS: Changes in lipid mediators and macrophage metabolism were assessed in C57Bl/6 mice following 4 weeks of voluntary exercise training. To investigate whether exercise-stimulated upregulation of specialized proresolving lipid mediators (SPMs) was sufficient to enhance mitochondrial respiration, both macrophages from control mice and human donors were incubated in vitro with SPMs and mitochondrial respiratory parameters were measured using extracellular flux analysis. Compound-C, an ATP-competitive inhibitor of AMPK kinase activity, was used to investigate the role of AMPK activity in SPM-induced mitochondrial metabolism. To assess the in vivo contribution of 5-lipoxygenase in AMPK activation and exercise-induced mitochondrial metabolism in macrophages, Alox5-/- mice were also subjected to exercise training.
    RESULTS: Four weeks of exercise training enhanced proresolving lipid mediator production, while also stimulating the catabolism of inflammatory lipid mediators (e.g., leukotrienes and prostaglandins). This shift in lipid mediator balance following exercise was associated with increased macrophage mitochondrial metabolism. We also find that treating human and murine macrophages in vitro with proresolving lipid mediators enhances mitochondrial respiratory parameters. The proresolving lipid mediators RvD1, RvE1, and MaR1, but not RvD2, stimulated mitochondrial respiration through an AMPK-dependent signaling mechanism. Additionally, in a subset of macrophages, exercise-induced mitochondrial activity in vivo was dependent upon 5-lipoxygenase activity.
    CONCLUSION: Collectively, these results suggest that exercise stimulates proresolving lipid mediator biosynthesis and mitochondrial metabolism in macrophages via AMPK, which might contribute to the anti-inflammatory and CVD risk reducing effect of exercise.
    Keywords:  exercise; inflammation; lipid mediators; macrophage; mitochondria
    DOI:  https://doi.org/10.1016/j.molmet.2022.101637
  23. Oncoimmunology. 2022 ;11(1): 2146855
      Writing in Science, Al Habsi et al. show that spermidine boosts the efficacy of monoclonal antibodies targeting PD-L1 in aged tumor-bearing mice by enhancing fatty acid oxidation in CD8 T cells. These results open new therapeutic avenues to improve the effectiveness of anticancer immunotherapies in aged patients.
    Keywords:  Aging; autophagy; immune checkpoints; mitochondria
    DOI:  https://doi.org/10.1080/2162402X.2022.2146855
  24. Immunology. 2022 Nov 14.
       BACKGROUND: Evidence suggests that the anti-inflammatory nucleoside adenosine can shape immune responses by shifting the regulatory (Treg)/helper (Th17) T-cell balance in favor of Tregs. Since this observation is based on in vivo and in vitro studies mostly confined to murine models, we comprehensively analyzed effects of adenosine on human T-cells.
    METHODS: Proliferation, phenotype and cytokine production of stimulated T-cells were assessed by flow cytometry, multiplex assay and ELISA, gene expression profiling was determined by microarray.
    RESULTS: We found that the pan-adenosine agonist 5'-N-ethylcarboxamidoadenosine (NECA) skews human CD3+ T-cell responses towards non-inflammatory Th17 cells. Addition of NECA during T-cell activation increased the development of IL-17+ cells with a CD4+ RORγt+ phenotype and enhanced CD161 and CD196 surface expression. Remarkably, these Th17 cells displayed non-inflammatory cytokine and gene expression profiles including reduced Th1/Th17 transdifferentiation, a stem cell-like molecular signature and induced surface expression of the adenosine-producing ectoenzymes CD39 and CD73. Thus, T-cells cultured under Th17-inducing conditions together with NECA were capable of suppressing responder T-cells. Finally, genome-wide gene expression profiling revealed metabolic quiescence previously associated with non-pathogenic Th17 cells in response to adenosine signaling.
    CONCLUSION: Our data suggest that adenosine induces non-inflammatory Th17 cells in human T-cell differentiation, potentially through regulation of metabolic pathways.
    Keywords:  Regulation/suppression; Th17; cell differentiation; human; inflammation
    DOI:  https://doi.org/10.1111/imm.13608
  25. Commun Biol. 2022 Nov 15. 5(1): 1250
      T-cell-driven immune responses are responsible for several autoimmune disorders, such as psoriasis vulgaris and rheumatoid arthritis. Identification of metabolic signatures in inflamed tissues is needed to facilitate novel and individualised therapeutic developments. Here we show the temporal metabolic dynamics of T-cell-driven inflammation characterised by nuclear magnetic resonance spectroscopy-based metabolomics, histopathology and immunohistochemistry in acute and chronic cutaneous delayed-type hypersensitivity reaction (DTHR). During acute DTHR, an increase in glutathione and glutathione disulfide is consistent with the ear swelling response and degree of neutrophilic infiltration, while taurine and ascorbate dominate the chronic phase, suggesting a switch in redox metabolism. Lowered amino acids, an increase in cell membrane repair-related metabolites and infiltration of T cells and macrophages further characterise chronic DTHR. Acute and chronic cutaneous DTHR can be distinguished by characteristic metabolic patterns associated with individual inflammatory pathways providing knowledge that will aid target discovery of specialised therapeutics.
    DOI:  https://doi.org/10.1038/s42003-022-04179-x
  26. Cell Discov. 2022 Nov 15. 8(1): 122
      Adipose tissue loss seen with cancer-associated cachexia (CAC) may functionally drive cachexia development. Using single-cell transcriptomics, we unveil a large-scale comprehensive cellular census of the stromal vascular fraction of white adipose tissues from patients with or without CAC. We report depot- and disease-specific clusters and developmental trajectories of adipose progenitors and immune cells. In adipose tissues with CAC, clear pro-inflammatory transitions were discovered in adipose progenitors, macrophages and CD8+ T cells, with dramatically remodeled cell interactome among these cells, implicating a synergistic effect in promoting tissue inflammation. Remarkably, activated CD8+ T cells contributed specifically to increased IFNG expression in adipose tissues from cachexia patients, and displayed a significant pro-catabolic effect on adipocytes in vitro; whereas macrophage depletion resulted in significantly rescued adipose catabolism and alleviated cachexia in a CAC animal model. Taken together, these results unveil causative mechanisms underlying the chronical inflammation and adipose wasting in CAC.
    DOI:  https://doi.org/10.1038/s41421-022-00466-3
  27. JCI Insight. 2022 Nov 17. pii: e159235. [Epub ahead of print]
      Systemic iron metabolism is disrupted in chronic kidney disease (CKD). However, little is known about local kidney iron homeostasis and its role in kidney fibrosis. Kidney-specific effects of iron therapy in CKD also remain elusive. Here, we elucidate the role of macrophage iron status in kidney fibrosis and demonstrate that it is a potential therapeutic target. In CKD, kidney macrophages exhibited depletion of labile iron pool (LIP) and induction of transferrin receptor 1, indicating intracellular iron deficiency. Low LIP in kidney macrophages was associated with their defective antioxidant response and pro-inflammatory polarization. Repletion of LIP in kidney macrophages through knockout of ferritin heavy chain (Fth1) reduced oxidative stress and mitigated fibrosis. Similar to Fth1 knockout, iron dextran therapy, through replenishing macrophage LIP, reduced oxidative stress, decreased the production of pro-inflammatory cytokines, and alleviated kidney fibrosis. Interestingly, iron significantly decreased TGF-β expression and suppressed TGF-β-driven fibrotic response of macrophages. Iron dextran therapy and FtH suppression had an additive protective effect against fibrosis. Adoptive transfer of iron-loaded macrophages alleviated kidney fibrosis, confirming the protective effect of iron-replete macrophages in CKD. Thus, targeting intracellular iron deficiency of kidney macrophages in CKD can serve as a therapeutic opportunity to mitigate disease progression.
    Keywords:  Chronic kidney disease; Fibrosis; Macrophages; Nephrology
    DOI:  https://doi.org/10.1172/jci.insight.159235
  28. Cell Death Dis. 2022 Nov 18. 13(11): 972
       RATIONALE: Genetic studies have proved the involvement of Tuberous sclerosis complex subunit 2 (Tsc2) in aortic aneurysm. However, the exact role of macrophage Tsc2 in the vascular system remains unclear. Here, we examined the potential function of macrophage Tsc2 in the development of aortic remodeling and aortic aneurysms.
    METHODS AND RESULTS: Conditional gene knockout strategy combined with histology and whole-transcriptomic analysis showed that Tsc2 deficiency in macrophages aggravated the progression of aortic aneurysms along with an upregulation of proinflammatory cytokines and matrix metallopeptidase-9 in the angiotensin II-induced mouse model. G protein-coupled receptor 68 (Gpr68), a proton-sensing receptor for detecting the extracellular acidic pH, was identified as the most up-regulated gene in Tsc2 deficient macrophages compared with control macrophages. Additionally, Tsc2 deficient macrophages displayed higher glycolysis and glycolytic inhibitor 2-deoxy-D-glucose treatment partially attenuated the level of Gpr68. We further demonstrated an Tsc2-Gpr68-CREB network in macrophages that regulates the inflammatory response, proteolytic degradation and vascular homeostasis. Gpr68 inhibition largely abrogated the progression of aortic aneurysms caused by Tsc2 deficiency in macrophages.
    CONCLUSIONS: The findings reveal that Tsc2 deficiency in macrophages contributes to aortic aneurysm formation, at least in part, by upregulating Gpr68 expression, which subsequently drives proinflammatory processes and matrix metallopeptidase activation. The data also provide a novel therapeutic strategy to limit the progression of the aneurysm resulting from Tsc2 mutations.
    DOI:  https://doi.org/10.1038/s41419-022-05423-2
  29. Nature. 2022 Nov 16.
      Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.
    DOI:  https://doi.org/10.1038/s41586-022-05438-x
  30. Transl Stroke Res. 2022 Nov 17.
      M1 microglial activation is crucial for the pathogenesis of early brain injury (EBI) following subarachnoid hemorrhage (SAH), and there is growing evidence that glucose metabolism is frequently involved in microglial activation. However, the molecular mechanism of glycolysis and its role in M1 microglial activation in the context of EBI are not yet fully understood. In this study, firstly, the relationship between aerobic glycolysis and M1 microglial activation as well as SAH-induced EBI was researched in vivo. Then, intervention on mammalian target of rapamycin (mTOR) was performed to investigate the effects on glycolysis-dependent M1 microglial activation and EBI and its relationship with hypoxia-inducible factor-1α (HIF-1α) in vivo. Next, Hif-1α was inhibited to analyze its role in aerobic glycolysis, M1 microglial activation, and EBI in vivo. Lastly, both in vivo and in vitro, mTOR inhibition and Hif-1α enhancement were administered simultaneously, and the combined effects were further confirmed again. The results showed that aerobic glycolysis and M1 microglial polarization were increased after SAH, and glycolytic inhibition could attenuate M1 microglial activation and EBI. Inhibition of mTOR reduced glycolysis-dependent M1 microglial polarization and EBI severity by down-regulating HIF-1α expression, while enhancement had the opposite effects. Blockading HIF-1α had the similar effects as suppressing mTOR, while HIF-1α agonist worked against mTOR antagonist when administered simultaneously. In conclusion, the present study showed new evidence that aerobic glycolysis induced by mTOR/HIF-1α might promote EBI after SAH by activating M1 microglia. This finding provided new insights for the treatment of EBI.
    Keywords:  Aerobic glycolysis; Early brain injury; Hif-1α; Microglia; Subarachnoid hemorrhage; mTOR
    DOI:  https://doi.org/10.1007/s12975-022-01105-5
  31. EMBO J. 2022 Nov 18. e112920
      Mitochondria are key signaling hubs for innate immune responses. In this issue, Wu et al (2022) report that remodeling of the outer mitochondrial membrane by the linear ubiquiting chain assembly complex (LUBAC) facilitates transport of activated NF-κB to the nucleus in response to TNF signaling.
    DOI:  https://doi.org/10.15252/embj.2022112920
  32. Nat Metab. 2022 Nov 17.
      The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.
    DOI:  https://doi.org/10.1038/s42255-022-00679-6
  33. iScience. 2022 Nov 18. 25(11): 105431
      In mammals, nicotinamide (NAM) is the primary NAD precursor available in circulation, a signaling molecule, and a precursor for methyl-nicotinamide (M-NAM) synthesis. However, our knowledge about how the body regulates tissue NAM levels is still limited. Here we demonstrate that dietary vitamin B3 partially regulates plasma NAM and NAM-derived metabolites, but not their tissue levels. We found that NAD de novo synthesis from tryptophan contributes to plasma and tissue NAM, likely by providing substrates for NAD-degrading enzymes. We also demonstrate that tissue NAM is mainly generated by endogenous metabolism and that the NADase CD38 is the main enzyme that produces tissue NAM. Tissue-specific CD38-floxed mice revealed that CD38 activity on endothelial and immune cells is the major contributor to tissue steady-state levels of NAM in tissues like spleen and heart. Our findings uncover the presence of different pools of NAM in the body and a central role for CD38 in regulating tissue NAM levels.
    Keywords:  Biochemistry; Biological sciences; Immunology; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2022.105431
  34. Biochim Biophys Acta Gen Subj. 2022 Nov 12. pii: S0304-4165(22)00187-8. [Epub ahead of print] 130269
      Pseudomonas quinolone signal (PQS) is a quorum-sensing molecule associated with Pseudomonas aeruginosa that regulates quorum sensing, extracellular vesicle biogenesis, iron acquisition, and the secretion of virulence factors. PQS has been shown to have immunomodulatory effects on the host. It induces oxidative stress, modulates cytokine levels, and activates regulated cell death in the host. In this study, we investigated the effects of PQS (10 μM) on host organelle dynamics and dysfunction in human macrophages at the interphase of endoplasmic reticulum (ER), mitochondria, and lysosome. This study showed that PQS increases cytosolic Ca+2 levels and elevates ER stress, as evidenced by increased expression of BiP and activation of the PERK-CHOP axis of unfolded protein response (UPR). Moreover, PQS also negatively affects mitochondria by disrupting mitochondrial membrane potential and increasing mitochondrial ROS generation (mROS). Additionally, PQS stimulation decreased the number of acridine orange-positive lysosomes, indicating lysosomal destabilization. Furthermore, PQS-induced lysosomal destabilization also induces overexpression of the lysosomal stress-responsive gene TFEB. Besides organelle dysfunction, PQS dysregulates inflammation-related genes by upregulating NLRC4, TMS1, and Caspase 1 while downregulating NLRP3 and IL-1β. Also, PQS increases gene expression of pro-inflammatory cytokines (IL-6, TNF-α, and IFN-γ). In conclusion, our findings suggest that PQS negatively affects human macrophages by interfering with organelle function and dysregulating inflammatory response. Consequently, this study provides crucial insight into PQS-driven macrophage dysfunction and may contribute to a better understanding of Pseudomonas aeruginosa-associated infections.
    Keywords:  Inflammation; Lysosomal dysfunction; Macrophages; Organelle stress; Pseudomonas aeruginosa; Pseudomonas quinolone signal
    DOI:  https://doi.org/10.1016/j.bbagen.2022.130269