bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2022–08–21
29 papers selected by
Dylan Ryan, University of Cambridge



  1. Cell Metab. 2022 Aug 11. pii: S1550-4131(22)00311-4. [Epub ahead of print]
      How environmental nutrient availability impacts T cell metabolism and function remains poorly understood. Here, we report that the presence of physiologic carbon sources (PCSs) in cell culture medium broadly impacts glucose utilization by CD8+ T cells, independent of transcriptional changes in metabolic reprogramming. The presence of PCSs reduced glucose contribution to the TCA cycle and increased effector function of CD8+ T cells, with lactate directly fueling the TCA cycle. In fact, CD8+ T cells responding to Listeria infection preferentially consumed lactate over glucose as a TCA cycle substrate in vitro, with lactate enhancing T cell bioenergetic and biosynthetic capacity. Inhibiting lactate-dependent metabolism in CD8+ T cells by silencing lactate dehydrogenase A (Ldha) impaired both T cell metabolic homeostasis and proliferative expansion in vivo. Together, our data indicate that carbon source availability shapes T cell glucose metabolism and identifies lactate as a bioenergetic and biosynthetic fuel for CD8+ effector T cells.
    Keywords:  (13)C tracing; T cells; TCA cycle; immunometabolism; lactate; metabolic programming; metabolomics
    DOI:  https://doi.org/10.1016/j.cmet.2022.07.012
  2. Cell Rep. 2022 Aug 16. pii: S2211-1247(22)01010-5. [Epub ahead of print]40(7): 111193
      Succinate dehydrogenase (SDH) loss-of-function mutations drive succinate accumulation in tumor microenvironments, for example in the neuroendocrine tumors pheochromocytoma (PC) and paraganglioma (PG). Control of innate immune cell activity by succinate is described, but effects on T cells have not been interrogated. Here we report that exposure of human CD4+ and CD8+ T cells to tumor-associated succinate concentrations suppresses degranulation and cytokine secretion, including of the key anti-tumor cytokine interferon-γ (IFN-γ). Mechanistically, this is associated with succinate uptake-partly via the monocarboxylate transporter 1 (MCT1)-inhibition of succinyl coenzyme A synthetase activity and impaired glucose flux through the tricarboxylic acid cycle. Consistently, pharmacological and genetic interventions restoring glucose oxidation rescue T cell function. Tumor RNA-sequencing data from patients with PC and PG reveal profound suppression of IFN-γ-induced genes in SDH-deficient tumors compared with those with other mutations, supporting a role for succinate in modulating the anti-tumor immune response in vivo.
    Keywords:  CP: immunology; CP: metabolism; T cell; metabolism; metabolite; succinate; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.celrep.2022.111193
  3. Nature. 2022 Aug 17.
      The mammalian immune system uses various pattern recognition receptors to recognize invaders and host damage and transmits this information to downstream immunometabolic signalling outcomes. Laccase domain-containing 1 (LACC1) protein is an enzyme highly expressed in inflammatory macrophages and serves a central regulatory role in multiple inflammatory diseases such as inflammatory bowel diseases, arthritis and clearance of microbial infection1-4. However, the biochemical roles required for LACC1 functions remain largely undefined. Here we elucidated a shared biochemical function of LACC1 in mice and humans, converting L-citrulline to L-ornithine (L-Orn) and isocyanic acid and serving as a bridge between proinflammatory nitric oxide synthase (NOS2) and polyamine immunometabolism. We validated the genetic and mechanistic connections among NOS2, LACC1 and ornithine decarboxylase 1 (ODC1) in mouse models and bone marrow-derived macrophages infected by Salmonella enterica Typhimurium. Strikingly, LACC1 phenotypes required upstream NOS2 and downstream ODC1, and Lacc1-/- chemical complementation with its product L-Orn significantly restored wild-type activities. Our findings illuminate a previously unidentified pathway in inflammatory macrophages, explain why its deficiency may contribute to human inflammatory diseases and suggest that L-Orn could serve as a nutraceutical to ameliorate LACC1-associated immunological dysfunctions such as arthritis or inflammatory bowel disease.
    DOI:  https://doi.org/10.1038/s41586-022-05111-3
  4. Cancer Immunol Res. 2022 Aug 15. pii: CIR-21-0813. [Epub ahead of print]
      Chronic T-cell receptor (TCR) signaling in the tumor microenvironment is known to promote T-cell dysfunction. However, we reasoned that poorly immunogenic tumors may also compromise T cells by impairing their metabolism. To address this, we assessed temporal changes in T-cell metabolism, fate, and function in models of ¬B-cell lymphoma driven by Myc, a promoter of energetics and repressor of immunogenicity. Increases in lymphoma burden most significantly impaired CD4+ T-cell function and promoted regulatory T-cell (Treg) and Th1-cell differentiation. Metabolomic analyses revealed early reprogramming of CD4+ T-cell metabolism, reduced glucose uptake, and impaired mitochondrial function, which preceded changes in T-cell fate. In contrast, B-cell lymphoma metabolism remained robust during tumor progression. Finally, mitochondrial functions were impaired in CD4+ and CD8+ T cells in lymphoma-transplanted OT-II and OT-I transgenic mice, respectively. These findings support a model, whereby early, TCR-independent, metabolic interactions with developing lymphomas limits T cell-mediated immune surveillance.
    DOI:  https://doi.org/10.1158/2326-6066.CIR-21-0813
  5. Immunity. 2022 Aug 10. pii: S1074-7613(22)00340-5. [Epub ahead of print]
      The risk of chronic diseases caused by aging is reduced by caloric restriction (CR)-induced immunometabolic adaptation. Here, we found that the matricellular protein, secreted protein acidic and rich in cysteine (SPARC), was inhibited by 2 years of 14% sustained CR in humans and elevated by obesity. SPARC converted anti-inflammatory macrophages into a pro-inflammatory phenotype with induction of interferon-stimulated gene (ISG) expression via the transcription factors IRF3/7. Mechanistically, SPARC-induced ISGs were dependent on toll-like receptor-4 (TLR4)-mediated TBK1, IRF3, IFN-β, and STAT1 signaling without engaging the Myd88 pathway. Metabolically, SPARC dampened mitochondrial respiration, and inhibition of glycolysis abrogated ISG induction by SPARC in macrophages. Furthermore, the N-terminal acidic domain of SPARC was required for ISG induction, while adipocyte-specific deletion of SPARC reduced inflammation and extended health span during aging. Collectively, SPARC, a CR-mimetic adipokine, is an immunometabolic checkpoint of inflammation and interferon response that may be targeted to delay age-related metabolic and functional decline.
    Keywords:  SPARC; TLR4; caloric restriction; inflammation; interferon-stimulated gene; macrophage; matricellular protein
    DOI:  https://doi.org/10.1016/j.immuni.2022.07.007
  6. Immunometabolism (Cobham). 2022 Jul;4(3): e00007
      The endoplasmic reticulum (ER) is a specialized organelle that participates in multiple cellular functions including protein folding, maturation, trafficking, and degradation to maintain homeostasis. However, hostile conditions in the tumor microenvironment (TME) disturb ER homeostasis. To overcome these conditions, cells activate ER stress response pathways, which are shown to augment the suppressive phenotypes of immune cells; however, the molecular mechanisms underpinning this process remain elusive. Here, we discuss a recent study by Raines et al, that suggests the role of the helper T-cell 2 (TH2) cytokine interleukin-4 (IL-4), and the TME in facilitating a protein kinase RNA-like ER kinase (PERK)-signaling cascade in macrophages, which promotes immunosuppressive M2 macrophage activation and proliferation. Further, the authors showed that PERK signaling promotes both mitochondrial respirations to fulfill cellular energy requirements and signaling through ATF4, which regulate phosphoserine aminotransferase 1 (PSAT1) activity to mediate the serine biosynthesis pathway. These results highlight a previously uncharacterized role for PERK in cellular metabolism and epigenetic modification in M2 macrophages, and thus offers a new therapeutic strategy for overcoming the immunosuppressive effects in the TME.
    Keywords:  ER stress; M2 macrophage; endoplasmic reticulum; myeloid cell-derived suppressor cells; protein kinase RNA-like ER kinase; tumor-associated macrophages
    DOI:  https://doi.org/10.1097/IN9.0000000000000007
  7. PLoS One. 2022 ;17(8): e0273080
      Ulcerative colitis (UC) is a complex, multifactorial disease driven by a dysregulated immune response against host commensal microbes. Despite rapid advances in our understanding of host genomics and transcriptomics, the metabolic changes in UC remain poorly understood. We thus sought to investigate distinguishing metabolic features of the UC colon (14 controls and 19 patients). Metabolomics analyses revealed inflammation state as the primary driver of metabolic variation rather than diagnosis, with multiple metabolites differentially regulated between inflamed and uninflamed tissues. Specifically, inflamed tissues were characterized by reduced levels of nicotinamide adenine dinucleotide (NAD+) and enhanced levels of nicotinamide (NAM) and adenosine diphosphate ribose (ADPr). The NAD+/NAM ratio, which was reduced in inflamed patients, served as an effective classifier for inflammation in UC. Mitochondria were also structurally altered in UC, with UC patient colonocytes displaying reduced mitochondrial density and number. Together, these findings suggest a link between mitochondrial dysfunction, inflammation, and NAD+ metabolism in UC.
    DOI:  https://doi.org/10.1371/journal.pone.0273080
  8. Front Immunol. 2022 ;13 945980
      CD8+ T lymphocytes are one of the main effector cells of the immune system, they protect the organism against intracellular threats such as viruses and bacteria, as well as neoplasms. It is currently well established that CD8+ T cells have distinct immune responses, given by their phenotypes Tc1, Tc2, Tc17, and TcReg. The cellular plasticity of such phenotypes depends on the presence of different combinations of cytokines in the extracellular medium. It is known that metabolic imbalances play an important role in immune response, but the precise role of metabolic disturbances on the differentiation and function of CD8+ T cells, however, has not been explored. In this work, we used a computational model to explore the potential effect of metabolic alterations such as hyperglycemia, high alcohol consumption, dyslipidemia, and diabetes on CD8+ T cell differentiation. Our model predicts that metabolic alterations preclude the effector function of all CD8+ T cell phenotypes except for TcReg cells. It also suggests that such inhibition originates from the increase of reactive oxygen species in response to metabolic stressors. Finally, we simulated the outcome of treating metabolic-inhibited CD8+ T cells with drugs targeting key molecules such as mTORC1, mTORC2, Akt, and others. We found that overstimulation of mTORC2 may restore cell differentiation and functions of all effector phenotypes, even in diabetic patients. These findings highlight the importance of our predictive model to find potential targets to strengthen immunosuppressed patients in chronic diseases, like diabetes.
    Keywords:  CD8+ T cells; ROS; alcohol consumption; diabetes; high-fat diet; mTORC2; metabolism; systems biology
    DOI:  https://doi.org/10.3389/fimmu.2022.945980
  9. Front Immunol. 2022 ;13 912899
       Introduction: Metabolic reprogramming in immune cells is diverse and distinctive in terms of complexity and flexibility in response to heterogeneous pathogenic stimuli. We studied the carbohydrate metabolic changes in immune cells in different types of infectious diseases. This could help build reasonable strategies when understanding the diagnostics, prognostics, and biological relevance of immune cells under alternative metabolic burdens.
    Methods: Search and analysis were conducted on published peer-reviewed papers on immune cell metabolism of a single pathogen infection from the four known types (bacteria, fungi, parasites, and viruses). Out of the 131 selected papers based on the PIC algorithm (pathogen type/immune cell/carbohydrate metabolism), 30 explored immune cell metabolic changes in well-studied bacterial infections, 17 were on fungal infections of known medical importance, and 12 and 57 were on parasitic and viral infections, respectively.
    Results and Discussion: While carbohydrate metabolism in immune cells is signaled by glycolytic shift during a bacterial or viral infection, it is widely evident that effector surface proteins are expressed on the surface of parasites and fungi to modulate metabolism in these cells.
    Conclusions: Carbohydrate metabolism in immune cells can be categorized according to the pathogen or the disease type. Accordingly, this classification can be used to adopt new strategies in disease diagnosis and treatment.
    Keywords:  COVID-19; carbohydrate metabolism; glucose; immune cells; pathogens
    DOI:  https://doi.org/10.3389/fimmu.2022.912899
  10. J Infect Dis. 2022 Aug 17. pii: jiac345. [Epub ahead of print]
       BACKGROUND: Obesity dysregulates immunity to influenza infection. Therefore, there is a critical need to investigate how obesity impairs immunity and to establish therapeutic approaches that mitigate the impact of increased adiposity. One mechanism by which obesity may alter immune response is through changes in cellular metabolism.
    METHODS: We studied inflammation and cellular metabolism of PBMCs isolated from individuals with obesity relative to lean controls. We also investigated if impairments to PBMC metabolism were reversible upon short-term weight loss following bariatric surgery.
    RESULTS: Obesity was associated with systemic inflammation and poor inflammation resolution. Unstimulated PBMCs from subjects with obesity had lower oxidative metabolism and ATP production compared to PBMCs from lean controls. PBMC secretome analyses showed that ex vivo stimulation with A/Cal/7/2009 H1N1 influenza led to a notable increase in IL-6 with obesity. Short-term weight loss via bariatric surgery improved biomarkers of systemic metabolism but did not improve markers of inflammation resolution, PBMC metabolism, or the PBMC secretome.
    CONCLUSIONS: These results show obesity drives a signature of impaired PBMC metabolism, which may be due to persistent inflammation. PBMC metabolism was not reversed after short-term weight loss despite improvements in measures of systemic metabolism.
    DOI:  https://doi.org/10.1093/infdis/jiac345
  11. Biochim Biophys Acta Mol Basis Dis. 2022 Aug 11. pii: S0925-4439(22)00190-9. [Epub ahead of print] 166519
       BACKGROUND: Community-acquired pneumonia (CAP) is responsible for a high morbidity and mortality worldwide. Monocytes are essential for pathogen recognition and the initiation of an innate immune response. Immune cells induce intracellular glycolysis upon activation to support several functions.
    OBJECTIVE: To obtain insight in the metabolic profile of blood monocytes during CAP, with a focus on glycolysis and branching metabolic pathways, and to determine a possible association between intracellular metabolite levels and monocyte function.
    METHODS: Monocytes were isolated from blood of patients with CAP within 24 h of hospital admission and from control subjects matched for age, sex and chronic comorbidities. Changes in glycolysis, oxidative phosphorylation (OXPHOS), tricarboxylic acid (TCA) cycle and the pentose phosphate pathway were investigated through RNA sequencing and metabolomics measurements. Monocytes were stimulated ex vivo with lipopolysaccharide (LPS) to determine their capacity to produce tumor necrosis factor (TNF), interleukin (IL)-1β and IL-10.
    RESULTS: 50 patients with CAP and 25 non-infectious control subjects were studied. When compared with control monocytes, monocytes from patients showed upregulation of many genes involved in glycolysis, including PKM, the gene encoding pyruvate kinase, the rate limiting enzyme for pyruvate production. Gene set enrichment analysis of OXPHOS, the TCA cycle and the pentose phosphate pathway did not reveal differences between monocytes from patients and controls. Patients' monocytes had elevated intracellular levels of pyruvate and the TCA cycle intermediate α-ketoglutarate. Monocytes from patients were less capable of producing cytokines upon LPS stimulation. Intracellular pyruvate (but not α-ketoglutarate) concentrations positively correlated with IL-1β and IL-10 levels released by patients' (but not control) monocytes upon exposure to LPS.
    CONCLUSION: These results suggest that elevated intracellular pyruvate levels may partially maintain cytokine production capacity of hyporesponsive monocytes from patients with CAP.
    Keywords:  Community-acquired pneumonia (CAP); Cytokine production; Monocytes; Pyruvate; Tolerance
    DOI:  https://doi.org/10.1016/j.bbadis.2022.166519
  12. Immunometabolism (Cobham). 2022 Jul;4(3): e00002
      The awareness that polyamines play a critical role in immune system regulation and function is coming into focus as the biological systems and analytical tools necessary to evaluate their roles have become available. Puleston et al have recently demonstrated that polyamine metabolism plays a central role in helper T-cell lineage determination through the production of the translational cofactor hypusinated eIF5A and faithful epigenetic regulation through proper histone acetylation. Their findings add to the rapidly growing body of data implicating properly controlled polyamine metabolism as essential for a normally functioning immune system.
    Keywords:  T cells; histone acetylation; hypusine; immune; polyamines; spermidine; spermine
    DOI:  https://doi.org/10.1097/IN9.0000000000000002
  13. Front Immunol. 2022 ;13 900826
      Interleukin-33 (IL-33) is a pleiotropic cytokine linked to various immune cells in the innate and adaptive immune systems. Recent studies of the effects of IL-33 on immune cells are beginning to reveal its regulatory mechanisms at the levels of cellular metabolism and epigenetic modifications. In response to IL-33 stimulation, these programs are intertwined with transcriptional programs, ultimately determining the fate of immune cells. Understanding these specific molecular events will help to explain the complex role of IL-33 in immune cells, thereby guiding the development of new strategies for immune intervention. Here, we highlight recent findings that reveal how IL-33, acting as an intracellular nuclear factor or an extracellular cytokine, alters metabolic checkpoints and cellular metabolism, which coordinately contribute to cell growth and function. We also discuss recent studies supporting the role of IL-33 in epigenetic alterations and speculate about the mechanisms underlying this relationship.
    Keywords:  IL-33; epigenetics; immune cells; metabolic checkpoints; metabolic pathways
    DOI:  https://doi.org/10.3389/fimmu.2022.900826
  14. Proc Natl Acad Sci U S A. 2022 Aug 23. 119(34): e2202144119
      The metabolic capacity of many cells is tightly regulated and can adapt to changes in metabolic resources according to environmental changes. Tissue-resident memory (TRM) CD8+ T cells are one of the most abundant T cell populations and offer rapid protection against invading pathogens, especially at the epithelia. TRM cells metabolically adapt to their tissue niche, such as the intestinal epithelial barrier. In the small intestine, the types of TRM cells are intraepithelial lymphocytes (IELs), which contain high levels of cytotoxic molecules and express activation markers, suggesting a heightened state of activation. We hypothesize that the tissue environment may determine IEL activity. We show that IEL activation, in line with its semiactive status, is metabolically faster than circulating CD8+ T cells. IEL glycolysis and oxidative phosphorylation (OXPHOS) are interdependently regulated and are dependent on rapid access to metabolites from the environment. IELs are restrained by local availability of metabolites, but, especially, glucose levels determine their activity. Importantly, this enables functional control of intestinal TRM cells by metabolic means within the fragile environment of the intestinal epithelial barrier.
    Keywords:  IELs; T cells; glucose; metabolism; tissue-resident memory T cells
    DOI:  https://doi.org/10.1073/pnas.2202144119
  15. Front Immunol. 2022 ;13 935692
      Murine macrophages activated by the Toll-like receptor 4 agonist lipopolysaccharide (LPS) polarize to the M1 type by inducing proinflammatory marker proteins and changing their energy metabolism to increased aerobic glycolysis and reduced respiration. We here show that the aliphatic isothiocyanate sulforaphane (Sfn) diminishes M1 marker expression (IL-1β, IL-6, TNF-α, iNOS, NO, and ROS) and leads to highly energetic cells characterized by both high glycolytic and high respiratory activity as assessed by extracellular flux analysis. Focusing on a potential connection between high glycolytic activity and low IL-1β expression in M1 (LPS/Sfn) macrophages, we reveal that Sfn impedes the moonlighting function of pyruvate kinase M2 (PKM2) in M1 macrophages. Sfn limits mono/dimerization and nuclear residence of PKM2 accompanied by reduced HIF-1α levels, Stat3 phosphorylation at tyrosine 705, and IL-1β expression while preserving high levels of cytosolic PKM2 tetramer with high glycolytic enzyme activity. Sfn prevents glutathionylation of PKM2 in LPS-stimulated macrophages which may account for the reduced loss of PKM2 tetramer. Overall, we uncover PKM2 as a novel affected hub within the anti-inflammatory activity profile of Sfn.
    Keywords:  M1 polarization; PKM2; glycolysis; interleukin 1 beta; macrophages; sulforaphane
    DOI:  https://doi.org/10.3389/fimmu.2022.935692
  16. Mol Cell. 2022 Aug 18. pii: S1097-2765(22)00712-2. [Epub ahead of print]82(16): 2918-2921
      Zhang et al. (2022) show that TCR signaling promotes the phosphorylation and activation of glycogen phosphorylase B (PYGB) in CD8+ memory T (Tmem) cells. PYGB-dependent glycogen mobilization provides a carbon source to support glycolysis and early Tmem cell recall responses.
    DOI:  https://doi.org/10.1016/j.molcel.2022.07.016
  17. Biochem Pharmacol. 2022 Aug 16. pii: S0006-2952(22)00305-7. [Epub ahead of print] 115211
      Western diet (WD), high in sugar and fat, promotes obesity and associated chronic low-grade pro-inflammatory environment, leading to impaired immune function, reprogramming of innate and adaptive immune cells, and development of chronic degenerative diseases, including cardiovascular disease. Increased concentrations of circulating and tissue ceramides contribute to inflammation and cellular dysfunction common in immune metabolic and cardiometabolic disease. Therefore, ceramide-lowering interventions have been considered as strategies to improve adipose tissue health. Here, we report the ability of omega-3 polyunsaturated fatty acids (n-3PUFA) to attenuate inflammatory phenotypes promoted by WD, through ceramide-dependent pathways. Using an animal model, we show that enrichment of WD diet with n-3PUFA, reduced the expression of ceramide synthase 2 (CerS2), and lowered the concentration of long-chain ceramides (C23-C26) in plasma and adipose tissues. N-3PUFA also increased prevalence of the anti-inflammatory CD4+Foxp3+ and CD4+Foxp3+CD25+ Treg subtypes in lymphoid organs. The CerS inhibitor FTY720 mirrored the effect of n-3PUFA. Treatment of animal and human T cells with ceramide C24 in vitro, reduced CD4+Foxp3+ Treg polarisation and IL10 production, and increased IL-17, while it decreased Erk and Akt phosphorylation downstream of T cell antigen receptors (TCR). These findings suggest that molecular mechanisms mediating the adverse effect of ceramides on regulatory T lymphocytes, progress through reduced TCR signalling. Our findings suggest that nutritional enrichment of WD with fish oil n-3PUFA can partially mitigate its detrimental effects, potentially improving the low-grade inflammation associated with immune metabolic disease. Compared to pharmacological interventions, n-3PUFA offer a simpler approach that can be accommodated as lifestyle choice.
    Keywords:  adipose tissue; ceramide synthase; ceramides; high fat western diet; omega 3 polyunsaturated fatty acids; regulatory T cells
    DOI:  https://doi.org/10.1016/j.bcp.2022.115211
  18. Nat Protoc. 2022 Aug 19.
      Identifying metabolites and delineating their immune-regulatory contribution in the tumor microenvironment is an area of intense study. Interrogating metabolites and metabolic networks among immune cell subsets and host cells from resected tissues and fluids of human patients presents a major challenge, owing to the specialized handling of samples for downstream metabolomics. To address this, we first outline the importance of collaborating with a biobank for coordinating and streamlining workflow for point of care, sample collection, processing and cryopreservation. After specimen collection, we describe our 60-min rapid bead-based cellular enrichment method that supports metabolite analysis between T cells and tumor cells by mass spectrometry. We also describe how the metabolic data can be complemented with metabolic profiling by flow cytometry. This protocol can serve as a foundation for interrogating the metabolism of cell subsets from primary human ovarian cancer.
    DOI:  https://doi.org/10.1038/s41596-022-00729-z
  19. J Nutr Biochem. 2022 Aug 14. pii: S0955-2863(22)00195-4. [Epub ahead of print] 109127
      Fatty acid esters of hydroxyl fatty acids (FAHFAs) are a new family of endogenous lipids that exert anti-inflammatory action. Among the various FAHFA isomers, the dietary source of oleic acid-hydroxy stearic acid (OAHSA) and its anti-inflammatory functions are poorly understood. This study investigated the composition of OAHSA isomers in dietary oils and the impact of 12-OAHSA on obesity-induced inflammation. LC-MS/MS analysis revealed that various dietary oils, including fish oil, corn oil, palm oil, soybean oil, and olive oil, present a wide variation in OAHSA profiles and amounts. The highest amounts of total OAHSAs are present in olive oil including 12-OAHSA. Compared to vehicle-treated obese mice, administration of 12-OAHSA significantly improved glucose homeostasis, independent of body weight. 12-OAHSA-treated mice displayed significantly reduced accumulation of CD11c+ adipose tissue macrophages, and CD4+/CD8+ adipose tissue T lymphocytes. Concomitantly, the expression of pro-inflammatory cytokine genes and the NF-κB signaling pathway were significantly decreased in the 12-OAHSA-treated adipose tissue, while the expression of the anti-inflammatory gene Il10 was markedly increased. Moreover, in vitro cell culture experiments showed that 12-OAHSA significantly inhibited the LPS-induced inflammatory response in macrophages by suppressing the NF-κB signaling pathway. Collectively, these results indicated that 12-OAHSA, as a component of olive oil, mitigates obesity-induced insulin resistance by regulating AT inflammation. Therefore, 12-OAHSA could be used as a novel nutritional intervention against obesity-associated metabolic dysregulation.
    Keywords:  12-OAHSA; FAHFA; LC-MS/MS; adipose tissue inflammation; olive oil
    DOI:  https://doi.org/10.1016/j.jnutbio.2022.109127
  20. Immunometabolism (Cobham). 2022 Jul;4(3): e00003
      A shift in the energy-metabolism balance from oxidative phosphorylation to glycolysis is observed in several phenomena, from oncogenesis to differentiation. And this shift is not merely an indicator of the phenotypic change-an increase in glucose delivery often drives the adaption. At first blush, it seems that any route of entry should be equivalent, as long as sufficient quantities are supplied. However, an extensive study comparing the Th17 and Th1 subtypes of T cells now suggests that similar glucose transporters may not be interchangeable. Manipulation of individual transporters, or the downstream metabolites of their substrates, may afford dampening of autoimmunity potential with some degree of precision.
    Keywords:  T cells; gene expression; glucose; glucose transporter; metabolism
    DOI:  https://doi.org/10.1097/IN9.0000000000000003
  21. BMC Med. 2022 Aug 18. 20(1): 255
       BACKGROUND: Periprostatic adipose tissue (PPAT) plays a role in prostate cancer (PCa) progression. PPAT lipidomic composition study may allow us to understand the tumor metabolic microenvironment and provide new stratification factors.
    METHODS: We used ultra-high-performance liquid chromatography-mass spectrometry-based non-targeted lipidomics to profile lipids in the PPAT of 40 patients with PCa (n = 20 with low-risk and n = 20 high-risk). Partial least squares-discriminant analysis (PLS-DA) and variable importance in projection (VIP) analysis were used to identify the most relevant features of PPAT between low- and high-risk PCa, and metabolite set enrichment analysis was used to detect disrupted metabolic pathways. Metabolic crosstalk between PPAT and PCa cell lines (PC-3 and LNCaP) was studied using ex vivo experiments. Lipid uptake and lipid accumulation were measured. Lipid metabolic-related genes (SREBP1, FASN, ACACA, LIPE, PPARG, CD36, PNPLA2, FABP4, CPT1A, FATP5, ADIPOQ), inflammatory markers (IL-6, IL-1B, TNFα), and tumor-related markers (ESRRA, MMP-9, TWIST1) were measured by RT-qPCR.
    RESULTS: Significant differences in the content of 67 lipid species were identified in PPAT samples between high- and low-risk PCa. PLS-DA and VIP analyses revealed a discriminating lipidomic panel between low- and high-risk PCa, suggesting the occurrence of disordered lipid metabolism in patients related to PCa aggressiveness. Functional analysis revealed that alterations in fatty acid biosynthesis, linoleic acid metabolism, and β-oxidation of very long-chain fatty acids had the greatest impact in the PPAT lipidome. Gene analyses of PPAT samples demonstrated that the expression of genes associated with de novo fatty acid synthesis such as FASN and ACACA were significantly lower in PPAT from high-risk PCa than in low-risk counterparts. This was accompanied by the overexpression of inflammatory markers (IL-6, IL-1B, and TNFα). Co-culture of PPAT explants with PCa cell lines revealed a reduced gene expression of lipid metabolic-related genes (CD36, FASN, PPARG, and CPT1A), contrary to that observed in co-cultured PCa cell lines. This was followed by an increase in lipid uptake and lipid accumulation in PCa cells. Tumor-related genes were increased in co-cultured PCa cell lines.
    CONCLUSIONS: Disturbances in PPAT lipid metabolism of patients with high-risk PCa are associated with tumor cell metabolic changes.
    Keywords:  De novo fatty acid synthesis; Lipid metabolism; Lipidomic; Periprostatic adipose tissue; Prostate cancer
    DOI:  https://doi.org/10.1186/s12916-022-02457-3
  22. J Am Soc Nephrol. 2022 Aug 19. pii: ASN.2022030378. [Epub ahead of print]
      Background: Chronic kidney disease (CKD) is characterized by a sustained proinflammatory response of the immune system, promoting hypertension and cardiovascular disease. The underlying mechanisms are incompletely understood, but may be linked to gut dysbiosis. Dysbiosis has been described in adults with CKD; however, comorbidities limit CKD-specific conclusions. Methods: We analyzed the fecal microbiome, metabolites, and immune phenotypes in 48 children (normal kidney function, CKD stage G3-G4, G5 treated by hemodialysis (HD) or kidney transplantation) with a mean age of 10.6 ± 3.8 years. Results: Serum TNF-α and sCD14 were stage-dependently elevated, indicating inflammation, gut barrier dysfunction, and endotoxemia. We observed compositional and functional alterations of the microbiome, including diminished production of short-chain fatty acids. Plasma metabolite analysis revealed a stage-dependent increase of tryptophan metabolites of bacterial origin. Serum from HD patients activated the aryl hydrocarbon receptor and stimulated TNF-α production in monocytes, corresponding to a proinflammatory shift from classical to non classical and intermediate monocytes. Unsupervised analysis of T cells revealed a loss of mucosa-associated invariant T (MAIT) cells and regulatory T cell subtypes in HD patients. Conclusions: Gut barrier dysfunction and microbial metabolite imbalance apparently mediate the pro-inflammatory immune phenotype, thereby driving the susceptibility to cardiovascular disease. The data highlight the importance of the microbiota-immune axis in CKD, irrespective of confounding comorbidities.
    DOI:  https://doi.org/10.1681/ASN.2022030378
  23. Blood. 2022 Aug 19. pii: blood.2022016926. [Epub ahead of print]
      Administration of azithromycin after allogeneic hematopoietic stem cell transplantation for hematological malignancies has been associated with relapse in a randomized phase 3 controlled clinical trial. Studying 240 samples from patients randomized in this trial is a unique opportunity to better understand the mechanisms underlying relapse, the first cause of mortality after transplantation. We used multi-omics on patients' samples to decipher immune alterations associated with azithromycin intake and post-transplant relapsed malignancies. Azithromycin was associated with a network of altered energy metabolism pathways and immune subsets, including T cells biased toward immunomodulatory and exhausted profiles. In vitro, azithromycin exposure inhibited T cells cytotoxicity against tumor cells and impaired T cells metabolism through glycolysis inhibition, mitochondrial genes downregulation, and immunomodulatory genes upregulation, notably SOCS1. These results highlight that azithromycin directly affects immune cells that favor relapse, which raises caution about long-term use of azithromycin treatment in patients at high risk of malignancies.
    DOI:  https://doi.org/10.1182/blood.2022016926
  24. Sci Immunol. 2022 Aug 12. 7(74): eabl3795
      A diet rich in saturated fat and carbohydrates causes low-grade chronic inflammation in several organs, including the liver, ultimately driving nonalcoholic steatohepatitis. In this setting, environment-driven lipotoxicity and glucotoxicity induce liver damage, which promotes dendritic cell activation and generates a major histocompatibility complex class II (MHC-II) immunopeptidome enriched with peptides derived from proteins involved in cellular metabolism, oxidative phosphorylation, and the stress responses. Here, we demonstrated that lipotoxicity and glucotoxicity, as driven by a high-fat and high-fructose (HFHF) diet, promoted MHC-II presentation of nested T and B cell epitopes from protein disulfide isomerase family A member 3 (PDIA3), which is involved in immunogenic cell death. Increased MHC-II presentation of PDIA3 peptides was associated with antigen-specific proliferation of hepatic CD4+ immune infiltrates and isotype switch of anti-PDIA3 antibodies from IgM to IgG3, indicative of cellular and humoral PDIA3 autoreactivity. Passive transfer of PDIA3-specific T cells or PDIA3-specific antibodies also exacerbated hepatocyte death, as determined by increased hepatic transaminases detected in the sera of mice subjected to an HFHF but not control diet. Increased humoral responses to PDIA3 were also observed in patients with chronic inflammatory liver conditions, including autoimmune hepatitis, primary biliary cholangitis, and type 2 diabetes. Together, our data indicated that metabolic insults caused by an HFHF diet elicited liver damage and promoted pathogenic immune autoreactivity driven by T and B cell PDIA3 epitopes.
    DOI:  https://doi.org/10.1126/sciimmunol.abl3795
  25. Theranostics. 2022 ;12(13): 6038-6056
      Rationale: Immunosuppression in the tumor microenvironment (TME) is key to the pathogenesis of solid tumors. Tumor cell-intrinsic autophagy is critical for sustaining both tumor cell metabolism and survival. However, the role of autophagy in the host immune system that allows cancer cells to escape immune destruction remains poorly understood. Here, we determined if attenuated host autophagy is sufficient to induce tumor rejection through reinforced adaptive immunity. Furthermore, we determined whether dietary glutamine supplementation, mimicking attenuated host autophagy, is capable of promoting antitumor immunity. Methods: A syngeneic orthotopic tumor model in Atg5+/+ and Atg5flox/flox mice was established to determine the impact of host autophagy on the antitumor effects against mouse malignant salivary gland tumors (MSTs). Multiple cohorts of immunocompetent mice were used for oncoimmunology studies, including inflammatory cytokine levels, macrophage, CD4+, and CD8+ cells tumor infiltration at 14 days and 28 days after MST inoculation. In vitro differentiation and in vivo dietary glutamine supplementation were used to assess the effects of glutamine on Treg differentiation and tumor expansion. Results: We showed that mice deficient in the essential autophagy gene, Atg5, rejected orthotopic allografts of isogenic MST cells. An enhanced antitumor immune response evidenced by reduction of both M1 and M2 macrophages, increased infiltration of CD8+ T cells, elevated IFN-γ production, as well as decreased inhibitory Tregs within TME and spleens of tumor-bearing Atg5flox/flox mice. Mechanistically, ATG5 deficiency increased glutamine level in tumors. We further demonstrated that dietary glutamine supplementation partially increased glutamine levels and restored potent antitumor responses in Atg5+/+ mice. Conclusions: Dietary glutamine supplementation exposes a previously undefined difference in plasticity between cancer cells, cytotoxic CD8+ T cells and Tregs.
    Keywords:  CD8; Treg; autophagy; glutamine; tumor microenvironment
    DOI:  https://doi.org/10.7150/thno.73896
  26. Nat Commun. 2022 Aug 16. 13(1): 4804
      Metabolite alteration has been associated with the pathogenesis of inflammatory bowel disease (IBD), including colitis. Mannose, a natural bioactive monosaccharide that is involved in metabolism and synthesis of glycoproteins, exhibits anti-inflammatory and anti-oxidative activities. We show here that the circulating level of mannose is increased in patients with IBD and mice with experimental colitis. Mannose treatment attenuates intestinal barrier damage in two mouse colitis models, dextran sodium sulfate (DSS)-induced colitis and spontaneous colitis in IL-10-deficient mice. We demonstrate that mannose treatment enhanced lysosomal integrity and limited the release of cathepsin B, preventing mitochondrial dysfunction and myosin light chain kinase (MLCK)-induced tight junction disruption in the context of intestinal epithelial damage. Mannose exerts a synergistic therapeutic effect with mesalamine on mouse colitis. Cumulatively, the results indicate that mannose supplementation may be an optional approach to the treatment of colitis and other diseases associated with intestinal barrier dysfunction.
    DOI:  https://doi.org/10.1038/s41467-022-32505-8
  27. Biochem Pharmacol. 2022 Aug 10. pii: S0006-2952(22)00302-1. [Epub ahead of print]204 115208
      Eicosanoids are a family of bioactive compounds derived from arachidonic acid (AA) that play pivotal roles in physiology and disease, including inflammatory conditions of multiple organ systems. The biosynthesis of eicosanoids requires a series of catalytic steps that are controlled by designated enzymes, which can be regulated by inflammatory and stress signals via transcriptional and translational mechanisms. In the past decades, evidence have emerged indicating that G-protein coupled receptors (GPCRs) can sense extracellular metabolites, and regulate inflammatory responses including eicosanoid production. This review focuses on the recent advances of metabolite GPCRs research, their role in regulation of eicosanoid biosynthesis, and the link to pathophysiological conditions.
    Keywords:  Eicosanoid; GPCR; Immunometabolism; Inflammation; Metabolic stress; Metabolite
    DOI:  https://doi.org/10.1016/j.bcp.2022.115208
  28. Front Immunol. 2022 ;13 936967
      Pyruvate kinase (PK) is a key enzyme that catalyzes the dephosphorylation of phosphoenolpyruvate (PEP) into pyruvate, and is responsible for the production of ATP during glycolysis. As another important isozyme of PK, pyruvate kinase M2 (PKM2) exists in cells with high levels of nucleic acid synthesis, such as normal proliferating cells (e.g., lymphocytes and intestinal epithelial cells), embryonic cells, adult stem cells, and tumor cells. With further research, PKM2, as an important regulator of cellular pathophysiological activity, has attracted increasing attention in the process of autoimmune response and inflammatory. In this re]view, we examine the contribution of PKM2 to the human immune response. Further studies on the immune mechanisms of PKM2 are expected to provide more new ideas and drug targets for immunotherapy of inflammatory and autoimmune diseases, guiding drug development and disease treatment.
    Keywords:  PKM2; immune response; inflammatory diseases; metabolic reprogramming; proinflammatory cytokines
    DOI:  https://doi.org/10.3389/fimmu.2022.936967