bims-imicid Biomed News
on Immunometabolism of infection, cancer and immune-mediated disease
Issue of 2022‒06‒12
33 papers selected by
Dylan Ryan
University of Cambridge


  1. Mol Cell. 2022 May 25. pii: S1097-2765(22)00443-9. [Epub ahead of print]
      Lysosomes are the main organelles in macrophages for killing invading bacteria. However, the precise mechanism underlying lysosomal biogenesis upon bacterial infection remains enigmatic. We demonstrate here that LPS stimulation increases IRG1-dependent itaconate production, which promotes lysosomal biogenesis by activating the transcription factor, TFEB. Mechanistically, itaconate directly alkylates human TFEB at cysteine 212 (Cys270 in mice) to induce its nuclear localization by antagonizing mTOR-mediated phosphorylation and cytosolic retention. Functionally, abrogation of itaconate synthesis by IRG1/Irg1 knockout or expression of an alkylation-deficient TFEB mutant impairs the antibacterial ability of macrophages in vitro. Furthermore, knockin mice harboring an alkylation-deficient TFEB mutant display elevated susceptibility to Salmonella typhimurium infection, whereas in vivo treatment of OI, a cell-permeable itaconate derivative, limits inflammation. Our study identifies itaconate as an endogenous metabolite that functions as a lysosomal inducer in macrophages in response to bacterial infection, implying the potential therapeutic utility of itaconate in treating human bacterial infection.
    Keywords:  TFEB; alkylation; bacterial infection; innate immunity; itaconate; lysosomal biogenesis; macrophage
    DOI:  https://doi.org/10.1016/j.molcel.2022.05.009
  2. Atherosclerosis. 2022 May 25. pii: S0021-9150(22)00251-9. [Epub ahead of print]352 35-45
      BACKGROUND AND AIMS: Metabolic reprogramming of innate immune cells is emerging as a key player in the progression of a number of chronic diseases, including atherosclerosis, where high rates of glycolysis correlate with plaque instability. This study aimed to investigate if cholesterol crystals, which are key atherosclerosis-associated DAMPs (damage/danger-associated molecular patterns), alter immune cell metabolism and whether this, in turn, impacts on macrophage phenotype and function.METHODS AND RESULTS: Primary human macrophages were treated with cholesterol crystals and expression of M1 (CXCL9, CXCL10) and M2-associated (MRC1, CCL13) macrophage markers, alarmins, and inflammatory cytokines were assessed either by real-time PCR or ELISA. Cholesterol crystal-induced changes in glycolytic markers were determined using real-time PCR and western blotting, while changes in cellular respiration and mitochondrial dynamics were examined via Seahorse analysis, Fluorescence Lifetime Imaging Microscopy (FLIM) and confocal microscopy. Treatment of macrophages with cholesterol crystals upregulated mRNA levels of CXCL9 and CXCL10, while concomitantly downregulating expression of MRC1 and CCL13. Cholesterol crystal--treated macrophages also exhibited a significant shift in metabolism to favour glycolysis, accompanied by the expression of key glycolytic markers GLUT1, Hexokinase 2, HIF1α, GAPDH and PFKFB3. Furthermore, we show that these effects are mediated upstream by the glycolytic enzyme, PKM2, and that direct inhibition of glycolysis or PKM2 nuclear localisation leads to a significant reduction in cholesterol crystal-induced inflammatory readouts.
    CONCLUSIONS: This study not only provides further insight into how atherosclerosis-associated DAMPs impact on immune cell function, but also highlights metabolic reprogramming as a potential therapeutic target for cholesterol crystal-related inflammation.
    Keywords:  Atherosclerosis; Cardiovascular disease; Immunometabolism; Inflammation; Innate immunity; Macrophages; Metabolic reprogramming
    DOI:  https://doi.org/10.1016/j.atherosclerosis.2022.05.015
  3. Int J Mol Sci. 2022 May 26. pii: 5970. [Epub ahead of print]23(11):
      Accelerated glycolysis leads to secretion and accumulation of lactate and protons in the tumor environment and determines the efficacy of adoptive T cell and checkpoint inhibition therapy. Here, we analyzed effects of lactic acid on different human CD4 T cell subsets and aimed to increase CD4 T cell resistance towards lactic acid. In all CD4 T cell subsets analyzed, lactic acid inhibited metabolic activity (glycolysis and respiration), cytokine secretion, and cell proliferation. Overexpression of the lactate-metabolizing isoenzyme LDHB increased cell respiration and mitigated lactic acid effects on intracellular cytokine production. Strikingly, LDHB-overexpressing cells preferentially migrated into HCT116 tumor spheroids and displayed higher expression of cytotoxic effector molecules. We conclude, that LDHB overexpression might be a promising strategy to increase the efficacy of adoptive T cell transfer therapy.
    Keywords:  LDH; T cell metabolism; T cells; adoptive cell transfer; glycolysis; interferon gamma; lactate; lactic acid
    DOI:  https://doi.org/10.3390/ijms23115970
  4. Br J Haematol. 2022 Jun 08.
      Immune thrombocytopenia (ITP) is an acquired autoimmune disease, in which the imbalance of CD4+ T cell subsets play a key role in the pathogenesis. Since T cells highly depend on metabolism for their function, we hypothesized that T cell dysfunction may be due to intracellular metabolic reprogramming. We found that in ITP, T cell metabolism shifts from oxidative phosphorylation to glycolysis. Empagliflozin, a sodium-glucose cotransporter 2 inhibitor, has shown regulatory metabolic effects on proximal tubular epithelial cells and cardiac cells beyond glucose lowering. However, the effects of empagliflozin on T cells remain unknown. To further investigate the metabolic dysfunction of CD4+ T cells in ITP, we explored the effect of empagliflozin on CD4+ T-cell differentiation in ITP. Our results are the first to show that increased glycolysis in CD4+ T cells resulted in an unbalanced CD4+ T-cell population. Furthermore, empagliflozin can affect the differentiation of CD4+ T-cell subsets by inhibiting Th1 and Th17 cell populations while increasing Tregs. Empagliflozin appears to regulate CD4+ T cells through inhibiting the mTOR signal pathway. Considering these results, we propose that empagliflozin could be used as a potential therapeutic option for ITP by modulating metabolic reprogramming in CD4+ T cells.
    Keywords:  SGLT2 inhibitor; T subsets; glycolysis; immune thrombocytopenia; oxidative phosphorylation
    DOI:  https://doi.org/10.1111/bjh.18293
  5. J Adv Res. 2022 May 31. pii: S2090-1232(22)00125-4. [Epub ahead of print]
      BACKGROUND: Mesenchymal stromal/stem cells (MSCs) are the most promising stem cells for the treatment of multiple inflammatory and immune diseases due to their easy acquisition and potent immuno-regulatory capacities. These immune functions mainly depend on the MSC secretion of soluble factors. Recent studies have shown that the metabolism of MSCs plays critical roles in immunomodulation, which not only provides energy and building blocks for macromolecule synthesis but is also involved in the signaling pathway regulation.AIM OF REVIEW: A thorough understanding of metabolic regulation in MSC immunomodulatory properties can provide new sights to the enhancement of MSC-based therapy.
    KEY SCIENTIFIC CONCEPTS OF REVIEW: MSC immune regulation can be affected by cellular metabolism (glucose, fatty acid and amino acid metabolism), which further mediates MSC therapy efficiency in inflammatory and immune diseases. The enhancement of glycolysis of MSCs, such as signaling molecule activation, inflammatory cytokines priming, or environmental control can promote MSC immune functions and therapeutic potential. Besides glucose metabolism, inflammatory stimuli also alter the lipid molecular profile of MSCs, but the direct link with immunomodulatory properties remains to be further explored. Arginine metabolism, glutamine-glutamate metabolism and tryptophan-kynurenine via indoleamine 2,3-dioxygenase (IDO) metabolism all contribute to the immune regulation of MSCs. In addition to the metabolism dictating the MSC immune functions, MSCs also influence the metabolism of immune cells and thus determine their behaviors. However, more direct evidence of the metabolism in MSC immune abilities as well as the underlying mechanism requires to be uncovered.
    Keywords:  Immunomodulatory properties; Mesenchymal stromal/stem cells (MSCs); Metabolism; Therapy
    DOI:  https://doi.org/10.1016/j.jare.2022.05.012
  6. J Zhejiang Univ Sci B. 2022 Jun 15. pii: 1673-1581(2022)06-0461-20. [Epub ahead of print]23(6): 461-480
      The negative effects of low temperature can readily induce a variety of diseases. We sought to understand the reasons why cold stress induces disease by studying the mechanisms of fine-tuning in macrophages following cold exposure. We found that cold stress triggers increased macrophage activation accompanied by metabolic reprogramming of aerobic glycolysis. The discovery, by genome-wide RNA sequencing, of defective mitochondria in mice macrophages following cold exposure indicated that mitochondrial defects may contribute to this process. In addition, changes in metabolism drive the differentiation of macrophages by affecting histone modifications. Finally, we showed that histone acetylation and lactylation are modulators of macrophage differentiation following cold exposure. Collectively, metabolism-related epigenetic modifications are essential for the differentiation of macrophages in cold-stressed mice, and the regulation of metabolism may be crucial for alleviating the harm induced by cold stress.
    Keywords:  Autophagy; Histone; Low temperature; Metabolic reprogramming; Stress
    DOI:  https://doi.org/10.1631/jzus.B2101091
  7. J Immunol. 2022 Jun 06. pii: ji2101090. [Epub ahead of print]
      CD8+ T cell proliferation and differentiation into effector and memory states are high-energy processes associated with changes in cellular metabolism. CD28-mediated costimulation of T cells activates the PI3K/AKT/mammalian target of rapamycin signaling pathway and induces eukaryotic translation initiation factor 4E-dependent translation through the derepression by 4E-BP1 and 4E-BP2. In this study, we demonstrate that 4E-BP1/2 proteins are required for optimum proliferation of mouse CD8+ T cells and the development of an antiviral effector function. We show that translation of genes encoding mitochondrial biogenesis is impaired in T cells derived from 4E-BP1/2-deficient mice. Our findings demonstrate an unanticipated role for 4E-BPs in regulating a metabolic program that is required for cell growth and biosynthesis during the early stages of CD8+ T cell expansion.
    DOI:  https://doi.org/10.4049/jimmunol.2101090
  8. STAR Protoc. 2022 Jun 17. 3(2): 101441
      Studying the metabolic fitness of T cells is fundamental to understand how immune responses are regulated. Here, we describe a step-by-step protocol optimized to efficiently generate and isolate effector antigen-specific CD8+ T cells ex vivo using costimulation. We also detail steps to evaluate their metabolic activity using Seahorse technology. This protocol can be used to measure the glycolytic potential of effector murine T cells in response to different manipulations, such as infections, adjuvant studies, gene editing, or metabolite supplementation. For complete details on the use and execution of this protocol, please refer to Agliano et al. (2022).
    Keywords:  Cell Biology; Cell isolation; Cell-based Assays; Flow Cytometry/Mass Cytometry; Immunology; Metabolism
    DOI:  https://doi.org/10.1016/j.xpro.2022.101441
  9. Theranostics. 2022 ;12(8): 3995-4009
      Rationale: Macrophages are multifunctional cells with a pivotal role on tissue development, homeostasis and regeneration. Indeed, in response to tissue injury and the ensuing regeneration process, macrophages are challenged and undergo massive metabolic adaptations and changes. However, the control of this metabolic reprogramming by macrophage microenvironment has never been deciphered in vivo. Methods: In this study, we used zebrafish model and caudal fin resection as a robust regeneration system. We explored specific changes in gene expression after tissue amputation via single-cell RNA sequencing analysis and whole-tissue transcriptomic analysis. Based on the identification of key modifications, we confirmed the role of the lactate pathway in macrophage response and fin regeneration, through the combination of chemical and genetic inhibitors of this pathway. Results: Single cell RNA sequencing revealed the upregulation of different genes associated with glycolysis and lactate metabolism in macrophages, upon fin regeneration. Hence, using chemical inhibitors of the LDH enzyme, we confirmed the role of lactate in macrophage recruitment and polarization, to promote a pro-inflammatory phenotype and enhance fin regeneration. The genetic modulation of monocarboxylate transporters illustrated a complex regulation of lactate levels, based on both intracellular and extracellular supplies. Commonly, the different sources of lactate resulted in macrophage activation with an increased expression level of inflammatory cytokines such as TNFa during the first 24 hours of regeneration. Transcriptomic analyses confirmed that lactate induced a global modification of gene expression in macrophages. Conclusion: Altogether, our findings highlight the crucial role of lactate at the onset of macrophage differentiation toward a pro-inflammatory phenotype. The deep modifications of macrophage phenotype mediated by lactate and downstream effectors play a key role to coordinate inflammatory response and tissue regeneration.
    Keywords:  Regeneration; lactate; macrophage; single cell RNA-sequencing; zebrafish
    DOI:  https://doi.org/10.7150/thno.65235
  10. Front Immunol. 2022 ;13 868669
      Decidual polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) are essential to immune tolerance during pregnancy. A reduction in the number of these cells is associated with unexplained recurrent pregnancy loss (URPL). In our previous study, we reported that PMN-MDSCs are a group of mature neutrophils that are activated by the decidua microenvironment. In the present study, we show that the decidua microenvironment induces substantial lipid accumulation in neutrophils during their differentiation to PMN-MDSCs. Lower levels of lipid accumulation are detected in PMN-MDSCs from URPL patients, and the amount of lipid in the PMN-MDSCs is positively correlated with the proportion of PMN-MDSCs. Next, we demonstrate that decidua-derived IL6 with the presence of arachidonic acid upregulates fatty acid-binding protein 5 (FABP5) via the phosphorylation of signal transducer and activator of transcription 3 (STAT3). Fy -60ABP5 then continuously stimulates intracellular lipid accumulation. Increased intracellular lipid accumulation mediates arachidonic acid metabolism, a pathway that is significantly activated by the induction of the decidua microenvironment, to stimulate the synthesis of prostaglandin E2 (PGE2) and finally induce the differentiation of PMN-MDSCs. To summarize, decidua-derived IL6 facilitates the differentiation of PMN-MDSCs from neutrophils via the pSTAT3/FABP5/PGE2 pathway. Defects in the process may result in impaired differentiation and dysfunction of PMN-MDSCs in URPL. These findings enhance our understanding of the physiological mechanisms of immune tolerance in pregnancy and provide therapeutic options for URPL.
    Keywords:  PGE2 synthesis; arachidonic acid metabolism; fatty acid-binding protein 5; immune tolerance in pregnancy; polymorphonuclear myeloid-derived suppressor cells; unexplained recurrent pregnancy loss
    DOI:  https://doi.org/10.3389/fimmu.2022.868669
  11. J Cell Biol. 2022 Jul 04. pii: e202203095. [Epub ahead of print]221(7):
      Fbxo7 is associated with cancer and Parkinson's disease. Although Fbxo7 recruits substrates for SCF-type ubiquitin ligases, it also promotes Cdk6 activation in a ligase-independent fashion. We discovered PFKP, the gatekeeper of glycolysis, in a screen for Fbxo7 substrates. PFKP is an essential Cdk6 substrate in some T-ALL cells. We investigated the molecular relationship between Fbxo7, Cdk6, and PFKP, and the effect of Fbxo7 on T cell metabolism, viability, and activation. Fbxo7 promotes Cdk6-independent ubiquitination and Cdk6-dependent phosphorylation of PFKP. Importantly, Fbxo7-deficient cells have reduced Cdk6 activity, and hematopoietic and lymphocytic cells show high expression and significant dependency on Fbxo7. CD4+ T cells with reduced Fbxo7 show increased glycolysis, despite lower cell viability and activation levels. Metabolomic studies of activated CD4+ T cells confirm increased glycolytic flux in Fbxo7-deficient cells, alongside altered nucleotide biosynthesis and arginine metabolism. We show Fbxo7 expression is glucose-responsive at the mRNA and protein level and propose Fbxo7 inhibits PFKP and glycolysis via its activation of Cdk6.
    DOI:  https://doi.org/10.1083/jcb.202203095
  12. J Med Virol. 2022 Jun 10.
      The field of immunometabolism investigates and describes the effects of metabolic rewiring in immune cells throughout activation and the fates of these cells. Recently, it has been appreciated that immunometabolism plays an essential role in the progression of viral infections, cancer, and autoimmune diseases. Regarding COVID-19, the aberrant immune response underlying the progression of diseases establishes two major respiratory pathologies, including acute respiratory distress syndrome (ARDS) or pneumonia-induced acute lung injury (ALI). Both innate and adaptive immunity (T cell-based) were impaired in the course of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Current findings have deciphered that macrophages (innate immune cells) are involved in the inflammatory response seen in COVID-19. It has been demonstrated that immune system cells can change metabolic reprogramming in some conditions, including autoimmune diseases, cancer, and infectious disease, including COVID-19. The growing findings on metabolic reprogramming in COVID-19 allow an exploration of metabolites with immunomodulatory properties as future therapies to combat this hyper-inflammatory response. The elucidation of the exact role and mechanism underlying this metabolic reprograming in immune cells could help apply more precise approaches to initial diagnosis, prognosis, and in-hospital therapy. This report discusses the latest findings from COVID-19 on host metabolic reprogramming and immunometabolic responses. This article is protected by copyright. All rights reserved.
    Keywords:  COVID-19; Immune reaction; Immunometabolism; Inflammation; SARS-CoV2
    DOI:  https://doi.org/10.1002/jmv.27929
  13. Bone. 2022 Jun 07. pii: S8756-3282(22)00145-4. [Epub ahead of print] 116468
      The term osteoimmunology describes an interdisciplinary research field that links the investigation of osteology (bone cells) with immunology. The crosstalk between innate and adaptive immune cells and cells involved in bone remodeling, mainly bone-resorbing osteoclasts and bone-forming osteoblasts, becomes particularly obvious in the inflammatory autoimmune disease rheumatoid arthritis (RA). Besides striking inflammation of the joints, RA causes bone loss, leading to joint damage and disabilities as well as generalized osteoporosis. Mechanistically, RA-associated immune cells (macrophages, T cells, B cells etc.) produce high levels of pro-inflammatory cytokines, receptor activator of nuclear factor κB ligand (RANKL) and autoantibodies that promote bone degradation and at the same time counteract new bone formation. Today, antirheumatic therapy effectively ceases joint inflammation and arrests bone erosion. However, the repair of established bone lesions still presents a challenging task and requires improved treatment options. In this review, we outline the knowledge gained over the past years about the immunopathogenesis of RA and the impact of a dysregulated immune system on bone metabolism.
    Keywords:  Bone erosion; Osteoblasts; Osteoclasts; Osteoimmunology; Rheumatoid arthritis
    DOI:  https://doi.org/10.1016/j.bone.2022.116468
  14. Biomater Sci. 2022 Jun 10.
      A majority of cancers fail to respond to immunotherapy due to the immunosuppressive tumor microenvironment (TME), and metabolic regulation of the TME has been a promising strategy to improve immunotherapy. Lactate is a key metabolic player in tumor immune response since its excess secretion aggravates tumor immune escape by favoring the polarization of tumor-associated macrophages (TAMs) to an immunosuppressive phenotype meanwhile impeding the tumor infiltration of the cytotoxic T lymphocyte. Here, we proposed a metabolic reprogramming mechanism to ameliorate tumor immunosuppression by using lonidamine and syrosingopine incorporated liposomes (L@S/L) to regulate lactate production and efflux. Concretely, lonidamine reduced lactate production by affecting the glycolytic metabolic pathway while syrosingopine decreased lactate efflux by inhibiting the key protein expression of the lactate transporter MCT-4. Consequently, both the drugs synergistically normalize the pH of the TME to overcome the tumor immunosuppressive microenvironment. In vivo studies demonstrated that the decreased extracellular lactate preferentially polarized TAMs to the M1 phenotype, simultaneously increased the proportion of NK cells and reduced the number of Treg cells. These results validated an efficient tumor immunotherapy in the breast cancer model. This new strategy of lactic acid metabolism regulation is proposed to operate in concert with immune modulation in the TME, which shows great potential for immunotherapy of immunologically "cold" tumors.
    DOI:  https://doi.org/10.1039/d2bm00650b
  15. ACS Appl Mater Interfaces. 2022 Jun 08.
      Rapid glycolysis of tumor cells produces excessive lactate to trigger acidification of the tumor microenvironment (TME), leading to the formation of immunosuppressive TME and tumor-associated macrophage (TAM) dysfunction. Therefore, reprogramming TAMs by depleting lactate with nanodrugs is expected to serve as an effective means of tumor-targeted immunotherapy. Herein, we report the use of lactic acid dehydrogenase (LDH)-mimicking SnSe nanosheets (SnSe NSs) loaded with a carbonic anhydrase IX (CAIX) inhibitor to reconstruct an acidic and immunosuppressive TME. As expected, this nanosystem could reprogram the TAM to achieve M1 macrophage activation and could also restore the potent tumor-killing activity of macrophages while switching their metabolic mode from mitochondrial oxidative phosphorylation to glycolysis. In addition, the repolarizing effect of SnSe NSs on macrophages was validated in a coculture model of bone marrow-derived macrophages, in three patient-derived malignant pleural effusion and in vivo mouse model. This study proposes a feasible therapeutic strategy for depleting lactate and thus ameliorating acidic TME employing Se-containing nanosheets, which could further amply the effects of TAM-based antitumor immunotherapy.
    Keywords:  acidic tumor microenvironment; antitumor; immunotherapy; macrophage polarization; nanozyme
    DOI:  https://doi.org/10.1021/acsami.2c05533
  16. Front Immunol. 2022 ;13 835936
      The nutritional status of dairy cows and the metabolism of specific nutrients are critical regulators of immune cell function. Around the time of parturition, mobilization of body lipid and muscle helps compensate for the decrease in nutrient intake and the increased requirements of the mammary gland for lactation. An end-result of these processes is the marked increase in circulating concentrations of fatty acids (FA), which are a major risk factor for immune dysfunction. In food animal species such as dairy cows, any disturbance in nutritional or immunological homeostasis leads to deleterious feedback loops that can further risk health, efficiency of nutrient use, and compromise availability of safe and nutritious dairy foods for humans. Despite substantial progress with respect to regulation of innate immunity, such knowledge for adaptive immunity is scarce. To help bridge this gap in knowledge, we sought to study the role of calcium release-activated calcium modulator ORAI1 activation in T cells systemic immune function in vivo. CD4+ T cells were isolated from peripheral blood of dairy cows diagnosed as healthy or with ketosis, a common metabolic disorder of FA metabolism. Results revealed that levels of intracellular Ca2+ and reactive oxygen species (ROS) along with the abundance of store-operated Ca2+ entry (SOCE) moiety increased during ketosis. Further, plasma concentrations of inflammatory cytokines were elevated, the balance of Th17/Treg cells was disrupted, mitochondrial function impaired, and the abundance of mitophagy-related proteins in CD4+ T cells altered during ketosis. Molecular characterization of the direct effects of FA was evaluated in CD4+ T cells isolated from the spleen of 1-day-old calves. Enhanced supply of FA increased intracellular Ca2+ and ROS concentrations, upregulated the abundance of proteins associated with mitochondrial dynamics and ORAI1. Intermediates of mitophagy accumulated and the balance of Th17/Treg cells also was affected by the supply of FA. These negative effects were attenuated by silencing or inhibition of ORAI1 in CD4+ T cells. Together, data indicated that physiological states that lead to increases in systemic concentrations of FA could impact adaptive immunity negatively through ORAI1 regulated intracellular Ca2+, ROS balance, and increased effector functions of Th17 cells.
    Keywords:  CD4+ T cells; ORAI1; SOCE; fatty acids; ketosis
    DOI:  https://doi.org/10.3389/fimmu.2022.835936
  17. Cell Rep. 2022 Jun 07. pii: S2211-1247(22)00689-1. [Epub ahead of print]39(10): 110912
      To elucidate the function of oxidative phosphorylation (OxPhos) during B cell differentiation, we employ CD23Cre-driven expression of the dominant-negative K320E mutant of the mitochondrial helicase Twinkle (DNT). DNT-expression depletes mitochondrial DNA during B cell maturation, reduces the abundance of respiratory chain protein subunits encoded by mitochondrial DNA, and, consequently, respiratory chain super-complexes in activated B cells. Whereas B cell development in DNT mice is normal, B cell proliferation, germinal centers, class switch to IgG, plasma cell maturation, and T cell-dependent as well as T cell-independent humoral immunity are diminished. DNT expression dampens OxPhos but increases glycolysis in lipopolysaccharide and B cell receptor-activated cells. Lipopolysaccharide-activated DNT-B cells exhibit altered metabolites of glycolysis, the pentose phosphate pathway, and the tricarboxylic acid cycle and a lower amount of phosphatidic acid. Consequently, mTORC1 activity and BLIMP1 induction are curtailed, whereas HIF1α is stabilized. Hence, mitochondrial DNA controls the metabolism of activated B cells via OxPhos to foster humoral immunity.
    Keywords:  B lymphocyte; CP: Immunology; HIF1; TCA cycle; class switch recombination; germinal center; hypoxia inducible factor 1; mTOR; mammalian target of Rapamycin; mitochondrial DNA; mitochondrial respiration; oxidative phosphorylation; phosphatidic acid; plasma cell
    DOI:  https://doi.org/10.1016/j.celrep.2022.110912
  18. Front Immunol. 2022 ;13 880262
      Background: Autoimmune hepatitis (AIH) is mediated by a cascade of T cell-mediated events directed at liver cells and persistent inflammation within the liver can eventually result in liver cirrhosis. Targeting glutamine metabolism has an impact on T cell activation and differentiation. However, the effect of glutamine metabolism blocking upon AIH remains unknown. We use glutaminase antagonist 6-diazo-5-oxo-L-norleucine (DON) for in vitro assays and its prodrug 2-(2-amino-4-methylpentanamido)-DON (JHU083) for in vivo assays to investigate the potential therapeutic effect and molecular mechanism of glutamine metabolism blocking in an AIH murine model.Methods: AIH mice were treated with JHU083 or vehicle before concanavalin A (ConA) administration, and disease severity was examined. Then activation and differentiation [including Th1/Th17 cells and cytotoxic T lymphocytes (CTL)] of T cells from Vehicle-WT, JHU083-AIH and Vehicle-AIH mice were tested. Furthermore, in vitro T cell activation and differentiation were measured using separated splenocytes stimulated with ConA with or without DON. The activation and differentiation of T cells were tested using flow cytometry, qRT-PCR and ELISA. Phosphorylation level of mammalian target of rapamycin (mTOR) and 70 kDa ribosomal protein S6 kinase (P70S6K) were examined by western blotting.
    Results: JHU083 and DON significantly suppressed the activation of T cells and inhibited the differentiation of Th1/Th17 cells and CTL in vivo and in vitro. Besides, we demonstrated that glutamine metabolism blocking inhibited T cells activation and differentiation through decreasing the mRNA expression of amino acid transporter solute carrier family 7 member 5 (SLC7A5) and mitigating the activation of mTOR signaling.
    Conclusions: We proved that targeting glutamine metabolism represents a potential new treatment strategy for patients with AIH and other T cell-mediated disease. Mechanistically, we demonstrated that glutamine metabolism blocking inhibits T cells activation and suppresses the differentiation of Th1/Th17 cells and CTL.
    Keywords:  SLC7A5; T cells activation and differentiation; autoimmune hepatitis (AIH); glutamine metabolism; mTOR signaling
    DOI:  https://doi.org/10.3389/fimmu.2022.880262
  19. J Nutr Biochem. 2022 Jun 02. pii: S0955-2863(22)00151-6. [Epub ahead of print] 109080
      Adipose tissue plays a crucial role in energy intake and regulation of metabolic homeostasis. Fructose consumption implicates in development and progression of metabolic dysfunctions. Fructose is a lipogenic sugar known to induce inflammatory response. However, the role of specific inflammatory signal such as nucleotide-binding and oligomerization domain-like receptor, leucine-rich repeat and pyrin domain containing protein 3 (NLRP3) in fructose-induced inflammatory response and its relevance to lipogenesis in adipose tissue are elusive. We assessed NLRP3 activation and its significance in inflammatory response and lipogenesis in epididymal adipose tissue of 60% fructose diet (HFrD)-fed rats. The long term consumption of HFrD led to impairment of glucose metabolism, development of visceral adiposity, insulin resistance, and elevation of serum triglycerides level, accompanied by activation of NLRP3 in adipose tissue. NLRP3 inflammasome activation in adipose tissue was associated with up-regulated expression of Nlrp3, Asc, and Caspase-1, and raised caspase-1 activity, which resulted in increased expression of IL-1β and IL-18 and secretion of IL-1β. Moreover, lipid accumulation and expression of transcription factors exacerbating accumulation of lipids were augmented in adipose tissue of HFrD-fed rats. Treatment with glyburide, quercetin or allopurinol corrected HFrD-induced dyslipidemia or hyperuricemia, and blocked NLRP3 activation, leading to mitigated inflammatory signalling and lipid accumulation in adipose tissue, improved glucose tolerance and insulin sensitivity in HFrD-fed rats. These data suggest the role of NLRP3 inflammasome to establish linkage among inflammation, lipid accumulation and insulin resistance in adipose tissue, and targeting NLRP3 inflammasome may be a plausible approach for prevention and management for fructose-induced metabolic impairments.
    Keywords:  NLRP3 inflammasome; adipose tissue; fructose; insulin resistance; lipogenesis
    DOI:  https://doi.org/10.1016/j.jnutbio.2022.109080
  20. Int J Mol Sci. 2022 May 31. pii: 6166. [Epub ahead of print]23(11):
      Reprogramming of metabolic pathways in monocytes and macrophages can induce a proatherosclerotic inflammatory memory called trained innate immunity. Here, we have analyzed the role of the Liver X receptor (LXR), a crucial regulator of metabolism and inflammation, in oxidized low-density lipoprotein (oxLDL)-induced trained innate immunity. Human monocytes were incubated with LXR agonists, antagonists, and oxLDL for 24 h. After five days of resting time, cells were restimulated with the TLR-2 agonist Pam3cys. OxLDL priming induced the expression of LXRα but not LXRβ. Pharmacologic LXR activation was enhanced, while LXR inhibition prevented the oxLDL-induced inflammatory response. Furthermore, LXR inhibition blocked the metabolic changes necessary for epigenetic reprogramming associated with trained immunity. In fact, enrichment of activating histone marks at the IL-6 and TNFα promotor was reduced following LXR inhibition. Based on the differential expression of the LXR isoforms, we inhibited LXRα and LXRβ genes using siRNA in THP1 cells. As expected, siRNA-mediated knock-down of LXRα blocked the oxLDL-induced inflammatory response, while knock-down of LXRβ had no effect. We demonstrate a specific and novel role of the LXRα isoform in the regulation of oxLDL-induced trained immunity. Our data reveal important aspects of LXR signaling in innate immunity with relevance to atherosclerosis formation.
    Keywords:  LXR; immunometabolism; inflammation; oxLDL; trained innate immunity
    DOI:  https://doi.org/10.3390/ijms23116166
  21. Cell Immunol. 2022 May 25. pii: S0008-8749(22)00070-3. [Epub ahead of print]377 104546
      Neutrophils are an essential part of the innate immune system, playing a critical role in the control of infectious diseases, maintenance of tissue homeostasis and regulation of tumorigenesis. However, their functional importance has often been overlooked due to the conception that they are short-lived and unable to proliferate. Recent studies indicate that the functions of neutrophils are diverse and can be influenced by cellular metabolisms, including that governing lipid homeostasis. Here, we review how lipids, especially lipid droplets, in neutrophils are dynamically regulated in different pathophysiological contexts, with a specific focus on the key regulators involved in lipid metabolism. We also describe how alterations in lipid metabolism are intertwined with different signaling pathways orchestrating neutrophil functions during pathogen defense, tissue repair and tumor metastasis.
    Keywords:  Immunometabolism; Lipid droplets; Neutrophil extracellular traps (NETs); Neutrophils; Tumor metastasis
    DOI:  https://doi.org/10.1016/j.cellimm.2022.104546
  22. Front Immunol. 2022 ;13 861290
      Neuropathic pain is characterized by hyperalgesia and allodynia. Inflammatory response is conducive to tissue recovery upon nerve injury, but persistent and exaggerated inflammation is detrimental and participates in neuropathic pain. Synaptic transmission in the nociceptive pathway, and particularly the balance between facilitation and inhibition, could be affected by inflammation, which in turn is regulated by glial cells. Importantly, glycometabolism exerts a vital role in the inflammatory process. Glycometabolism reprogramming of inflammatory cells in neuropathic pain is characterized by impaired oxidative phosphorylation in mitochondria and enhanced glycolysis. These changes induce phenotypic transition of inflammatory cells to promote neural inflammation and oxidative stress in peripheral and central nervous system. Accumulation of lactate in synaptic microenvironment also contributes to synaptic remodeling and central sensitization. Previous studies mainly focused on the glycometabolism reprogramming in peripheral inflammatory cells such as macrophage or lymphocyte, little attention was paid to the regulation effects of glycometabolism reprogramming on the inflammatory responses in glial cells. This review summarizes the evidences for glycometabolism reprogramming in peripheral inflammatory cells, and presents a small quantity of present studies on glycometabolism in glial cells, expecting to promote the exploration in glycometabolism in glial cells of neuropathic pain.
    Keywords:  astrocyte; glycolysis; glycometabolism reprogramming; inflammation; microglia; neuropathic pain; synapse
    DOI:  https://doi.org/10.3389/fimmu.2022.861290
  23. Nat Immunol. 2022 Jun 06.
      Extracellular acidification occurs in inflamed tissue and the tumor microenvironment; however, a systematic study on how pH sensing contributes to tissue homeostasis is lacking. In the present study, we examine cell type-specific roles of the pH sensor G protein-coupled receptor 65 (GPR65) and its inflammatory disease-associated Ile231Leu-coding variant in inflammation control. GPR65 Ile231Leu knock-in mice are highly susceptible to both bacterial infection-induced and T cell-driven colitis. Mechanistically, GPR65 Ile231Leu elicits a cytokine imbalance through impaired helper type 17 T cell (TH17 cell) and TH22 cell differentiation and interleukin (IL)-22 production in association with altered cellular metabolism controlled through the cAMP-CREB-DGAT1 axis. In dendritic cells, GPR65 Ile231Leu elevates IL-12 and IL-23 release at acidic pH and alters endo-lysosomal fusion and degradation capacity, resulting in enhanced antigen presentation. The present study highlights GPR65 Ile231Leu as a multistep risk factor in intestinal inflammation and illuminates a mechanism by which pH sensing controls inflammatory circuits and tissue homeostasis.
    DOI:  https://doi.org/10.1038/s41590-022-01231-0
  24. J Immunol. 2022 Jun 10. pii: ji2100666. [Epub ahead of print]
      Cytokine expression is fine-tuned by metabolic intermediates, which makes research on immunometabolism suitable to yield drugs with a wider prospect of application than the biological therapies that block proinflammatory cytokines. Switch from oxidative phosphorylation (OXPHOS) to glycolysis has been considered a characteristic feature of activated immune cells. However, some stimuli might enhance both routes concomitantly. The connection between the tricarboxylic acid cycle and cytokine expression was scrutinized in human monocyte-derived dendritic cells stimulated with the fungal surrogate zymosan. Results showed that nucleocytosolic citrate and ATP-citrate lyase activity drove IL1B, IL10, and IL23A expression by yielding acetyl-CoA and oxaloacetate, with the latter one supporting glycolysis and OXPHOS by maintaining cytosolic NAD+ and mitochondrial NADH levels through mitochondrial shuttles. Succinate dehydrogenase showed a subunit-specific ability to modulate IL23A and IL10 expression. Succinate dehydrogenase A subunit activity supported cytokine expression through the control of the 2-oxoglutarate/succinate ratio, whereas C and D subunits underpinned cytokine expression by conveying electron flux from complex II to complex III of the electron transport chain. Fatty acids may also fuel the tricarboxylic acid cycle and influence cytokine expression. Overall, these results show that fungal patterns support cytokine expression through a strong boost of glycolysis and OXPHOS supported by the use of pyruvate, citrate, and succinate, along with the compartmentalized NAD(H) redox state maintained by mitochondrial shuttles.
    DOI:  https://doi.org/10.4049/jimmunol.2100666
  25. J Adv Res. 2022 May 31. pii: S2090-1232(22)00124-2. [Epub ahead of print]
      INTRODUCTION: Sterol regulatory element binding protein (SREBP) cleavage-associating protein (SCAP) is a sterol-regulated escort protein that translocates SREBPs from the endoplasmic reticulum to the Golgi apparatus, thereby activating lipid metabolism and cholesterol synthesis. Although SCAP regulates lipid metabolism in metabolic tissues, such as the liver and muscle, the effect of macrophage-specific SCAP deficiency in adipose tissue macrophages (ATMs) of patients with metabolic diseases is not completely understood.OBJECTIVES: Here, we examined the function of SCAP in high-fat/high-sucrose diet (HFHS)-fed mice and investigated its role in the polarization of classical activated macrophages in adipose tissue.
    METHODS: Macrophage-specific SCAP knockout (mKO) mice were generated through crossbreeding lysozyme 2-cre mice with SCAP floxed mice which were then fed HFHS for 12 weeks. Primary macrophages were derived from bone marrow cells and analyzed further.
    RESULTS: We found that fat accumulation and the appearance of proinflammatory M1 macrophages were both higher in HFHS-fed SCAP mKO mice relative to floxed control mice. We traced the effect to a defect in the lipopolysaccharide-mediated increase in SREBP-1a that occurs in control but not SCAP mKO mice. Mechanistically, SREBP-1a increased expression of cholesterol 25-hydroxylase transcription, resulting in an increase in the production of 25-hydroxycholesterol (25-HC), an endogenous agonist of liver X receptor alpha (LXRα) which increased expression of cholesterol efflux to limit cholesterol accumulation and M1 polarization. In the absence of SCAP mediated activation of SREBP-1a, increased M1 macrophage polarization resulted in reduced cholesterol efflux downstream from 25-HC-dependent LXRα activation.
    CONCLUSION: Overall, the activation of the SCAP-SREBP-1a pathway in macrophages may provide a novel therapeutic strategy that ameliorates obesity by controlling cholesterol homeostasis in ATMs.
    Keywords:  Cholesterol 25-hydroxylase; Cholesterol efflux; Macrophages; SCAP; White adipose tissue
    DOI:  https://doi.org/10.1016/j.jare.2022.05.013
  26. Life Sci Alliance. 2022 Oct;pii: e202201441. [Epub ahead of print]5(10):
      Intracellular pathogens lose many metabolic genes during their evolution from free-living bacteria, but the pathogenic consequences of their altered metabolic programs on host immunity are poorly understood. Here, we show that a pathogenic strain of Francisella tularensis subsp. tularensis (FT) has five amino acid substitutions in RibD, a converting enzyme of the riboflavin synthetic pathway responsible for generating metabolites recognized by mucosal-associated invariant T (MAIT) cells. Metabolites from a free-living strain, F. tularensis subsp. novicida (FN), activated MAIT cells in a T-cell receptor (TCR)-dependent manner, whereas introduction of FT-type ribD to the free-living strain was sufficient to attenuate this activation in both human and mouse MAIT cells. Intranasal infection in mice showed that the ribD FT-expressing FN strain induced impaired Th1-type MAIT cell expansion and resulted in reduced bacterial clearance and worsened survival compared with the wild-type free-living strain FN. These results demonstrate that F. tularensis can acquire immune evasion capacity by alteration of metabolic programs during evolution.
    DOI:  https://doi.org/10.26508/lsa.202201441
  27. Rheumatology (Oxford). 2022 Jun 11. pii: keac338. [Epub ahead of print]
      OBJECTIVES: To investigate metabolite alterations in the plasma of systemic lupus erythematosus (SLE) patients to identify novel biomarkers and provide insight into SLE pathogenesis.METHODS: Patients with SLE (n = 41, discovery cohort and n = 37, replication cohort), healthy controls (HCs, n = 30 and n = 29), and patients with rheumatoid arthritis (RA) (n = 19, disease control) were recruited. Metabolic profiles of the plasma samples were analyzed using liquid chromatography-time-of-flight mass spectrometry (LC-TOFMS) and capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). Transcriptome data was analyzed using RNA-Seq for 18 immune cell subsets. Importance of histidine (His) in plasmablast differentiation was investigated by using mouse splenic B cells.
    RESULTS: We demonstrate that a specific amino acid combination including His can effectively distinguish between SLE patients and HCs. Random forest and partial least squares-discriminant analysis (PLS-DA) identified His as an effective classifier for SLE patients. A decrease in His plasma levels correlated with damage accrual independent of prednisolone dosage and type I interferon (IFN) signature. The oxidative phosphorylation (OXPHOS) signature in plasmablasts negatively correlated with His levels. We also showed that plasmablast differentiation induced by innate immune signals was dependent on His.
    CONCLUSIONS: Plasma His levels are a potential biomarker for SLE patients and are associated with damage accrual. Our data suggest the importance of His as a pathogenic metabolite in SLE pathogenesis.
    Keywords:  OXPHOS; SLE; histidine; metabolome; plasmablast
    DOI:  https://doi.org/10.1093/rheumatology/keac338
  28. Adv Mater. 2022 Jun 07. e2202715
      Osteoarthritis (OA) is a low-grade inflammatory and progressive joint disease, and its progression is closely associated with an imbalance in M1/M2 synovial macrophages. Repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype is emerging as a strategy to alleviate OA progression but is compromised by unsatisfactory efficiency. In this study, we pioneer the reprogramming of mitochondrial dysfunction with a camouflaged meta-Defensome, which can transform M1 synovial macrophages into the M2 phenotype with a high efficiency of 82.3%. The meta-Defensome recognizes activated macrophages via receptor-ligand interactions and accumulates in mitochondria through electrostatic attraction. These meta-Defensomes are macrophage membrane-coated polymeric nanoparticles decorated with dual ligands and co-loaded with S-methylisothiourea and MnO2 . In vitro results indicate that the meta-Defensomes successfully reprogram mitochondrial metabolism of RAW 246.7-differentiated M1 macrophages by restoring aerobic respiration by scavenging mtROS and inhibiting mtNOS, thereby increasing TFAM expression. Furthermore, meta-Defensomes are intravenously injected into CIOA mice and effectively suppress synovial inflammation and progression of early OA, as evident from the Osteoarthritis Research Society International (OARSI) score. Therefore, reprogramming mitochondrial metabolism can serve as a novel and practical approach to repolarize M1 synovial macrophages. The camouflaged meta-Defensomes are a promising therapeutic agent for impeding OA progression in clinical practice. This article is protected by copyright. All rights reserved.
    Keywords:  denfensome; mitochondrial dysfunction; mitochondrial targeting; nanoenzyme; osteoarthritis; synovial macrophages
    DOI:  https://doi.org/10.1002/adma.202202715
  29. Trends Plant Sci. 2022 Jun 01. pii: S1360-1385(22)00128-5. [Epub ahead of print]
      Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
    DOI:  https://doi.org/10.1016/j.tplants.2022.04.007
  30. J Exp Med. 2022 Jul 04. pii: e20220057. [Epub ahead of print]219(7):
      Deprivation of vitamin B12 (VB12) is linked to various diseases, but the underlying mechanisms in disease progression are poorly understood. Using multiomic approaches, we elucidated the responses of ileal epithelial cells (iECs) and gut microbiome to VB12 dietary restriction. Here, VB12 deficiency impaired the transcriptional and metabolic programming of iECs and reduced epithelial mitochondrial respiration and carnitine shuttling during intestinal Salmonella Typhimurium (STm) infection. Fecal microbial and untargeted metabolomic profiling identified marked changes related to VB12 deficiency, including reductions of metabolites potentially activating mitochondrial β-oxidation in iECs and short-chain fatty acids (SCFAs). Depletion of SCFA-producing microbes by streptomycin treatment decreased the VB12-dependent STm protection. Moreover, compromised mitochondrial function of iECs correlated with declined cell capability to utilize oxygen, leading to uncontrolled oxygen-dependent STm expansion in VB12-deficient mice. Our findings uncovered previously unrecognized mechanisms through which VB12 coordinates ileal epithelial mitochondrial homeostasis and gut microbiota to regulate epithelial oxygenation, resulting in the control of aerobic STm infection.
    DOI:  https://doi.org/10.1084/jem.20220057
  31. Int J Parasitol. 2022 Jun 04. pii: S0020-7519(22)00085-6. [Epub ahead of print]
      Approximately 2 billion people worldwide and a significant part of the domestic livestock are infected with soil-transmitted helminths, of which many establish chronic infections causing substantial economic and welfare burdens. Beside intensive research on helminth-triggered mucosal and systemic immune responses, the local mechanism that enables infective larvae to cross the intestinal epithelial barrier and invade mucosal tissue remains poorly addressed. Here, we show that Heligmosomoides polygyrus infective L3s secrete acetate and that acetate potentially facilitates paracellular epithelial tissue invasion by changed epithelial tight junction claudin expression. In vitro, impedance-based real-time epithelial cell line barrier measurements together with ex vivo functional permeability assays in intestinal organoid cultures revealed that acetate decreased intercellular barrier function via the G-protein coupled free fatty acid receptor 2 (FFAR2, GPR43). In vivo validation experiments in FFAR2-/- mice showed lower H. polygyrus burdens, whereas oral acetate-treated C57BL/6 wild type mice showed higher burdens. These data suggest that locally secreted acetate - as a metabolic product of the energy metabolism of H. polygyrus L3s - provides a significant advantage to the parasite in crossing the intestinal epithelial barrier and invading mucosal tissues. This is the first and a rate-limiting step for helminths to establish chronic infections in their hosts and if modulated could have profound consequences for their life cycle.
    Keywords:  Acetate; Barrier function; Helminths; Intestinal permeability; Microbiota
    DOI:  https://doi.org/10.1016/j.ijpara.2022.04.004