J Immunol. 2021 Sep 24. pii: ji2100108. [Epub ahead of print]
Inflammatory macrophages have been implicated in many diseases, including rheumatoid arthritis and inflammatory bowel disease. Therefore, targeting macrophage function and activation may represent a potential strategy to treat macrophage-associated diseases. We have previously shown that IFN-γ-induced differentiation of human M0 macrophages toward proinflammatory M1 state rendered them highly susceptible to the cytocidal effects of second mitochondria-derived activator of caspases mimetics (SMs), antagonist of the inhibitors of apoptosis proteins (IAPs), whereas M0 and anti-inflammatory M2c macrophages were resistant. In this study, we investigated the mechanism governing SM-induced cell death during differentiation into M1 macrophages and in polarized M1 macrophages. IFN-γ stimulation conferred on M0 macrophages the sensitivity to SM-induced cell death through the Jak/STAT, IFN regulatory factor-1, and mammalian target of rapamycin complex-1 (mTORC-1)/ribosomal protein S6 kinase pathways. Interestingly, mTORC-1 regulated SM-induced cell death independent of M1 differentiation. In contrast, SM-induced cell death in polarized M1 macrophages is regulated by the mTORC-2 pathway. Moreover, SM-induced cell death is regulated by cellular IAP (cIAP)-2, receptor-interacting protein kinase (RIPK)-1, and RIPK-3 degradation through mTORC activation during differentiation into M1 macrophages and in polarized M1 macrophages. In contrast to cancer cell lines, SM-induced cell death in M1 macrophages is independent of endogenously produced TNF-α, as well as the NF-κB pathway. Collectively, selective induction of cell death in human M1 macrophages by SMs may be mediated by cIAP-2, RIPK-1, and RIPK-3 degradation through mTORC activation. Moreover, blocking cIAP-1/2, mTORC, or IFN regulatory factor-1 may represent a promising therapeutic strategy to control M1-associated diseases.