bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2023‒06‒04
three papers selected by
Sebastian J. Hofer
University of Graz

  1. Amino Acids. 2023 May 31.
      Hypusine amino acid [Nε-(4-amino-2-hydroxybutyl)-lysine] was first isolated in 1971 from bovine brain extracts. Hypusine originates from a post-translational modification at the eukaryotic translation initiation factor 5A (eIF5A), a protein produced by archaebacteria and eukaryotes. The eIF5A protein is the only one described containing the hypusine residue, which is essential for its activity. Hypusine as a free amino acid is a consequence of proteolytic degradation of eIF5A. Herein, we showed, for the first time, evidence of biological activity for the free hypusine. C6 rat glioma cells were treated with hypusine, and different cellular parameters were evaluated. Hypusine treatment significantly reduced C6 cell proliferation and potently suppressed their clonogenic capacity without leading to apoptosis. Hypusine also decreased the Eif5A transcript content and the global protein synthesis profile that may occur due to negative feedback in response to high hypusine concentration, controlling the content of newly synthesized eIF5A, which can affect the translation process. Besides, hypusine treatment also altered cellular metabolism by changing the pathways for energy production, reducing cellular respiration coupled with oxidative phosphorylation, and increasing the anaerobic metabolism. These observed results and the relationship between eIF5A and tumor processes led us to test the combination of hypusine with the chemotherapeutic drug temozolomide. Combining temozolomide with hypusine reduced the MTT conversion to the same levels as those observed using double temozolomide dosage alone, demonstrating a synergetic action between the compounds. Thus, since 1971, this is the first study showing evidence of biological activity for hypusine not associated with being an essential component of the eiF5A protein. Finding out the molecular targets of hypusine are the following efforts to completely characterize its biological activity.
    Keywords:  Cell proliferation; Hypusine; Oxidative metabolism; Post-translational modification; Protein synthesis; eIF5A
  2. Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi. 2023 May 12. 35(2): 155-162
      OBJECTIVE: To identify and verify the interacting protein of α-11 giardin, so as provide the experimental evidence for studies on the α-11 giardin function.METHODS: The yeast two-hybrid cDNA library of the Giardia lambia C2 strain and the bait plasmid of α-11 giardin were constructed. All proteins interacting with α-11 giardin were screened using the yeast two-hybrid system. α-11 giardin and all screened potential interacting protein genes were constructed into pBiFc-Vc-155 and pBiFc-Vn-173 plasmids, and co-transfected into the breast cancer cell line MDA-MB-231. The interactions between α-11 giardin and interacting proteins were verified using bimolecular fluorescence complementation (BiFC).
    RESULTS: The yeast two-hybrid G. lambia cDNA library which was quantified at 2.715 × 107 colony-forming units (CFU) and the bait plasmid containing α-11 giardin gene without an autoactivation activity were constructed. Following two-round positive screening with the yeast two-hybrid system, two potential proteins interacting with α-11 giardin were screened, including eukaryotic translation initiation factor 5A (EIF5A), calmodulin-dependent protein kinase (CAMKL) and nicotinamide adenine dinucleotide phosphate-specific glutamate dehydrogenase (NADP-GDH), hypothetical protein 1 (GL50803_95880), hypothetical protein 2 (GL50803_87261) and a protein from Giardia canis virus. The α-11 giardin and EIF5A genes were transfected into the pBiFc-Vc-155 and pBiFc-Vn-173 plasmids using BiFC, and the recombinant plasmids pBiFc-Vc-155-α-11 and pBiFc-Vn-173-EIF5A were co-tranfected into MDA-MB-231 cells, which displayed green fluorescence under a microscope, indicating the interaction between α-11 giardin and EIF5A protein in cells.
    CONCLUSIONS: The yeast two-hybrid cDNA library of the G. lambia C2 strain has been successfully constructed, and six potential protein interacting with α-11 giardin have been identified, including EIF5A that interacts with α-11 giardin in cells.
    Keywords:  Bimolecular fluorescence complementation; Giardia lambia ; Protein-protein interaction; Yeast two-hybridization; α-11 giardin