bims-hypusi Biomed News
on Hypusine and eIF5A
Issue of 2023‒05‒14
two papers selected by
Sebastian J. Hofer
University of Graz

  1. bioRxiv. 2023 Apr 24. pii: 2023.04.24.537996. [Epub ahead of print]
      As professional secretory cells, beta cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic beta cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional beta cells is not well defined. In this study, we have identified a translational regulatory mechanism in the beta cell driven by the specialized mRNA translation factor, eukaryotic initiation factor 5A (eIF5A), which facilitates beta cell maturation. The mRNA translation function of eIF5A is only active when it is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of beta cell DHPS in mice reduces the synthesis of proteins critical to beta cell identity and function at the stage of beta cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the beta cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand.ARTICLE HIGHLIGHTS: Pancreatic beta cells are professional secretory cells that require adaptable mRNA translation for the rapid, inducible synthesis of proteins, including insulin, in response to changing metabolic cues. Our previous work in the exocrine pancreas showed that development and function of the acinar cells, which are also professional secretory cells, is regulated at the level of mRNA translation by a specialized mRNA translation factor, eIF5A HYP . We hypothesized that this translational regulation, which can be a response to stress such as changes in growth or metabolism, may also occur in beta cells. Given that the mRNA translation function of eIF5A is only active when the factor is post-translationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS), we asked the question: does DHPS/eIF5A HYP regulate the formation and maintenance of functional beta cells? We discovered that in the absence of beta cell DHPS in mice, eIF5A is not hypusinated (activated), which leads to a reduction in the synthesis of critical beta cell proteins that interrupts pathways critical for identity and function. This translational regulation occurs at weaning age, which is a stage of cellular stress and maturation for the beta cell. Therefore without DHPS/eIF5A HYP , beta cells do not mature and mice progress to hyperglycemia and diabetes. Our findings suggest that secretory cells have a mechanism to regulate mRNA translation during times of cellular stress. Our work also implies that driving an increase in mRNA translation in the beta cell might overcome or possibly reverse the beta cell defects that contribute to early dysfunction and the progression to diabetes.
  2. Oncol Lett. 2023 Jun;25(6): 246
      Cervical cancer (CC) is the most common human papillomavirus-related disease. Continuous activation of the NF-κB signaling pathway has been observed in CC. SHC binding and spindle associated 1 (SHCBP1) contributes to tumorigenesis and activation of the NF-κB pathway in multiple cancer types, while its function in CC remains unclear. In the present study, three Gene Expression Omnibus datasets were used to identify differentially expressed genes (DEGs) in CC. Loss- and gain-of-function experiments were performed using stable SHCBP1-silenced and SHCBP1-overexpressing CC cells. To further explore the molecular mechanism of SHCBP1 in CC, small interfering RNA targeting eukaryotic translation initiation factor 5A (EIF5A) was transfected into stable SHCBP1-overexpressing CC cells. The results demonstrated that SHCBP1 was an upregulated DEG in CC tissues compared with healthy control cervical tissues. Functional experiments revealed the pro-proliferative and pro-stemness role of SHCBP1 in CC cells (CaSki and SiHa cells), in vitro. Furthermore, the NF-κB signaling pathway in CC cells was activated by SHCBP1. Increases in cell proliferation, stemness and activation of NF-κB, induced by SHCBP1 overexpression in CC cells, were reversed by EIF5A knockdown. Taken together, the results indicated that SHCBP1 serves an important role in regulation of CC cell proliferation, self-renewal and activation of NF-κB via EIF5A. The present study demonstrated a potential molecular mechanism underlying the progression of CC.
    Keywords:  SH2 domain-binding protein; cervical cancer; eukaryotic translation initiation factor 5A; nuclear factor-κB