JCI Insight. 2025 Aug 07. pii: e183676. [Epub ahead of print]
Ying Ding,
Aixin Yu,
Milos Vujanac,
Sabrina N Copsel,
Alejandro Moro,
Luis Nivelo,
Molly Dalzell,
Nicolas Tchitchek,
Michelle Rosenzwajg,
Alejandro V Villarino,
Robert B Levy,
David Klatzmann,
Thomas R Malek.
Regulatory T cells (Tregs) are essential for peripheral tolerance and depend on TCR and IL-2R signaling for their homeostasis and function. In mice, IL-2-dependent BLIMP-1 contributes to Treg homeostasis. BLIMP-1 is a major transcriptional hub in human Tregs, but its mechanisms of action remain undefined. Here, using CRISPR/Cas9 ablation, we show that BLIMP-1 limits human Treg proliferation, but supports IL-10, CTLA4, several immune checkpoints, including CEACAM1, and Treg functional activity. BLIMP-1 restrains Treg expansion to IL-2 by downregulating CD25 and IL-2R signaling, and by enhancing CEACAM1 expression, which in turn inhibits responsiveness to CD3/CD28 signaling and activation of mTOR. Prolonged IL-2R signaling optimizes BLIMP-1 expression, supporting chromosomal opening of CEACAM1 to increased CEACAM1 expression through STAT5- and BLIMP-1-driven enhancers. Correspondingly, CEACAM1 is highly induced on Tregs from autoimmune patients undergoing low-dose IL-2 therapy, and these Tregs showed reduced proliferation. A humanized mouse model of xenogeneic graft versus host disease demonstrates that BLIMP-1 normally promotes, while CEACAM1 restrains, Treg suppressive activity. Collectively, our findings reveal that BLIMP-1 and CEACAM1 function in an IL-2-dependent feedback loop to restrain Treg proliferation and affect suppressive function. CEACAM1 also acts as a highly selective biomarker of IL-2R signaling in human T cells.
Keywords: Adaptive immunity; Autoimmune diseases; Autoimmunity; Immunology; Immunotherapy