bims-hummad Biomed News
on Humanised mouse models of autoimmune disorders
Issue of 2024–11–17
two papers selected by
Maksym V. Kopanitsa, Charles River Laboratories



  1. Immune Netw. 2024 Oct;24(5): e37
      Systemic sclerosis (SS) is an autoimmune disease and pathological mechanisms of SS are unclear. In this study, we investigated the role of T cells in the progression of SS using SKG mice and humanized mice. SKG mice have a spontaneous point mutation in ZAP70. We induced scleroderma in SKG mice and a humanized SS mouse model to assess whether T cell-mediated immune responses induce SS. As a result, we found increased dermal thickness, fibrosis, and lymphocyte infiltration in skin tissue in SKG SS mice compared to BALB/c mice (control). Also, blood cytokine level, including IL-4- and IFN-α which are produced by CD4+ T cells via STIM1/STING/STAT6/IRF3 signaling pathways, were increased in SKG mice. Interestingly, skin fibrosis was reduced by inhibiting STING pathway in skin fibroblast. Next, we demonstrated the pathophysiological role of IL-4 and IFN-α in skin fibrosis using a humanized SS mouse model and found increased IL-4- and IFN-α-producing CD4+ T cells and fibrosis. In this study, we found that STING-induced production of IL-4- and type I IFN by CD4+ T cells is a key factor in mouse model and humanized mouse model of SS. Our findings suggest that the STING/STAT6/IRF3 signaling pathways are potential therapeutic targets in SS.
    Keywords:  Cytokine; STAT6 transcription factor; STING; Systemic sclerosis; T cell
    DOI:  https://doi.org/10.4110/in.2024.24.e37
  2. Biomark Res. 2024 Nov 14. 12(1): 139
      Graft-versus-host disease (GVHD) is a life-threatening complication of allogeneic hematopoietic cell transplantations (allo-HCT) used for the treatment of hematological malignancies and other blood-related disorders. Until recently, the discovery of actionable molecular targets to treat GVHD and their preclinical testing was almost exclusively based on modeling allo-HCT in mice by transplanting bone marrow and splenocytes from donor mice into MHC-mismatched recipient animals. However, due to fundamental differences between human and mouse immunology, the translation of these molecular targets into the clinic can be limited. Therefore, humanized mouse models of GVHD were developed to circumvent this limitation. In these models, following the transplantation of human peripheral blood mononuclear cells (PBMCs) into immunodeficient mice, T cells recognize and attack mouse organs, inducing GVHD. Thereby, humanized mice provide a platform for the evaluation of the effects of candidate therapies on GVHD mediated by human immune cells in vivo. Understanding the pathophysiology of this xenogeneic GVHD is therefore crucial for the design and interpretation of experiments performed with this model. In this article, we comprehensively review the cellular and molecular mechanisms governing GVHD in the most commonly used model of xenogeneic GVHD: PBMC-engrafted NOD/LtSz-PrkdcscidIL2rγtm1Wjl (NSG) mice. By re-analyzing public sequencing data, we also show that the clonal expansion and the transcriptional program of T cells in humanized mice closely reflect those in humans. Finally, we highlight the strengths and limitations of this model, as well as arguments in favor of its biological relevance for studying T-cell reactions against healthy tissues or cancer cells.
    Keywords:  GVHD; Hematopoietic cell transplantation; NSG mice; Xenogeneic
    DOI:  https://doi.org/10.1186/s40364-024-00684-9