bims-hummad Biomed News
on Humanised mouse models of autoimmune disorders
Issue of 2024–11–10
three papers selected by
Maksym V. Kopanitsa, Charles River Laboratories



  1. Life Sci Alliance. 2025 Jan;pii: e202402996. [Epub ahead of print]8(1):
      The development and application of human TCR-like (TCRL) antibodies recognizing disease-specific MHC-peptide complexes may prove as an important tool for basic research and therapeutic applications. Multiple sclerosis is characterized by aberrant CD4 T-cell response to self-antigens presented by MHC class II molecules. This led us to select a panel of TCRL Abs targeting the immunodominant autoantigenic epitope MOG35-55 derived from myelin oligodendrocyte glycoprotein (MOG) presented on HLA-DR2, which is associated with multiple sclerosis (MS). We demonstrate that these TCRL Abs bind with high specificity to human HLA-DR2/MOG35-55-derived MHC class II molecules and can detect APCs that naturally present the MS-associated autoantigen in the humanized EAE transgenic mouse model. The TCRL Abs can block ex vivo and in vivo CD4 T-cell proliferation in response to MOG35-55 stimulation in an antigen-specific manner. Most significantly, administration of TCRL Abs to MOG35-55-induced EAE model in HLA-DR2 transgenic mice both prevents and regresses established EAE. TCRL function was associated with a reduction in autoreactive pathogenic T-cell infiltration into the CNS, along with modulation of activated CD11b+ macrophages/microglial APCs. Collectively, these findings demonstrate the combined action of TCRL Abs in blocking TCR-MHC interactions and modulating APC presentation and activation, leading to a profound antigen-specific inhibitory effect on the neuroinflammatory process, resulting in regression of EAE. Our study constitutes an in vivo proof of concept for the utility of TCR-like antibodies as antigen-specific immunomodulators for CD4-mediated autoimmune diseases such as MS, validating the importance of the TCR-MHC axis as a therapeutic target for various autoimmune and inflammatory diseases.
    DOI:  https://doi.org/10.26508/lsa.202402996
  2. STAR Protoc. 2024 Nov 01. pii: S2666-1667(24)00588-4. [Epub ahead of print]5(4): 103423
      Chimeric antigen receptor (CAR) T cell therapy often causes serious toxicities, such as cytokine release syndrome (CRS), mainly due to interleukin-6 (IL-6) secreted by monocyte lineage cells. Here, we describe a protocol to generate anti-CD19 CAR T cells and quantify human monocyte-derived IL-6 cocultured with CAR T cells and target tumor cells in vitro. We further describe a protocol to generate a humanized mouse model and evaluate CAR T cell-associated plasma IL-6 levels in vivo. For complete details on the use and execution of this protocol, please refer to Yoshikawa et al.1.
    Keywords:  Cancer; Cell culture; Flow Cytometry; Immunology
    DOI:  https://doi.org/10.1016/j.xpro.2024.103423
  3. Mol Ther. 2024 Oct 26. pii: S1525-0016(24)00686-5. [Epub ahead of print]
      IL-10+ regulatory B cells (Bregs) show great promise in treating graft versus host disease (GVHD), a life-threatening complication of post-hematopoietic stem cell transplantation. However, obtaining high-quality human IL-10+ Bregs in vitro remains a challenge due to the lack of unique specific marker and the triggering of pro-inflammatory cytokines expression. Here, by uncovering the critical signaling pathways in Bregs induction by mesenchymal stromal cells (MSCs), we firstly established an efficient Bregs induction system based on MSCs and GSK-3β blockage (CHIR-99021), which had a robust capacity to induce IL-10+ Bregs while suppress TNF-α expression. Furthermore, these Bregs population could be identified and enriched by CD1c+. Mechanistically, MSCs induced the expansion of Bregs through the PKA-mediated phosphorylation of cAMP response element binding protein (CREB). Thus, we developed a chemical-defined inducing protocol by PKA-CREB agonist, instead of MSCs, which can also effectively induce CD1c+ Bregs with lower TNF-α expression. Importantly, induced CD1c+ Bregs suppressed the proliferation of PBMC and the inflammatory cytokines secretion of T cells. When adoptive transferred to a humanized mouse model of GVHD, induced CD1c+ Bregs effectively alleviated GVHD. Overall, we establish an efficient ex vivo induction system for human Bregs, which has implications in developing novel Bregs-based therapies for GVHD.
    DOI:  https://doi.org/10.1016/j.ymthe.2024.10.026