Front Biosci (Landmark Ed). 2025 Aug 18. 30(8): 37006
Mitochondria play crucial roles in maintaining health and influencing disease progression by acting as central regulators of cellular homeostasis and energy production. Dysfunctions in mitochondrial activity are increasingly recognized as key contributors to various pathologies, ultimately impacting healthspan and disease outcomes. However, traditional treatments often do not restore damaged mitochondria to a healthy state. Mitochondrial transplantation, a cellular organelle-based therapy in which mitochondria are introduced into a recipient, has emerged as a novel concept in next-generation therapeutics that overcomes the limitations of current cell-based treatments. This review highlights the unique properties of mitochondria as therapeutic agents, including their ability to restore cellular functions and treat a wide range of diseases. In this review, we focus on the unique role of mitochondria in the regulation of stem cell functions, including stem cell fate, self-renewal, and differentiation. Various perspectives have been explored to better understand mitochondrial transplantation therapy, which harnesses the capacity of mitochondria as living drugs in regenerative medicine, as an innovative strategy to bridge the gap between cell therapy and organelle-based treatments and overcome current clinical barriers.
Keywords: mesenchymal stem cell; mitochondrial dysfunction; mitochondrial transplantation; organelle transplantation; regenerative medicine