Curr Issues Mol Biol. 2025 Jul 01. pii: 504. [Epub ahead of print]47(7):
Mitochondrial dysfunction is a key driver of neurological disorders due to the brain's high energy demands and reliance on mitochondrial homeostasis. Despite advances in genetic characterization, the heterogeneity of mitochondrial diseases complicates diagnosis and treatment. Mitochondrial dysfunction spans a broad clinical spectrum, from early-onset encephalopathies to adult neurodegeneration, with phenotypic and genetic variability necessitating integrated models of mitochondrial neuropathology. Mutations in nuclear or mitochondrial DNA disrupt energy production, induce oxidative stress, impair mitophagy and biogenesis, and lead to neuronal degeneration and apoptosis. This narrative review provides a structured synthesis of current knowledge by classifying mitochondrial-related neurological disorders according to disrupted biochemical pathways, in order to clarify links between genetic mutations, metabolic impairments, and clinical phenotypes. More specifically, a pathway-oriented framework was adopted that organizes disorders based on the primary mitochondrial processes affected: oxidative phosphorylation (OXPHOS), pyruvate metabolism, fatty acid β-oxidation, amino acid metabolism, phospholipid remodeling, multi-system interactions, and neurodegeneration with brain iron accumulation. Genetic, clinical and molecular data were analyzed to elucidate shared and distinct pathophysiological features. A comprehensive table synthesizes genetic causes, inheritance patterns, and neurological manifestations across disorders. This approach offers a conceptual framework that connects molecular findings to clinical practice, supporting more precise diagnostic strategies and the development of targeted therapies. Advances in whole-exome sequencing, pharmacogenomic profiling, mitochondrial gene editing, metabolic reprogramming, and replacement therapy-promise individualized therapeutic approaches, although hurdles including heteroplasmy, tissue specificity, and delivery challenges must be overcome. Ongoing molecular research is essential for translating these advances into improved patient care and quality of life.
Keywords: metabolic pathway disruption; mitochondrial diseases; mitochondrial dysfunction in neurodegeneration; mitochondrial genetics; mitochondrial replacement therapy; neurological manifestations; precision medicine