bims-hisfre Biomed News
on HSF1 and Creatine
Issue of 2025–06–01
nine papers selected by
James Heilman, Oregon Health & Science University



  1. Cell Stress Chaperones. 2025 May 25. pii: S1355-8145(25)00030-6. [Epub ahead of print] 100085
      Heat shock proteins (HSPs) play crucial roles in human endothelial cell functions such as migration and angiogenesis. However, human heat shock protein dynamics under stress conditions such as heat shock and hypoxia in human endothelial cells (ECs) are enigmatic, and the characteristics of HSPs in endothelial cells after exposure to thermal stress and a low-oxygen environment are unknown. We hypothesized that endothelial cells (ECs) adapt to heat shock (HS) and hypoxia by modulating chaperome oligomerization and that HSP70 is a major determinant of the endothelial phenotype. HSP70 inhibition with VER-155008 or YM-1 in primary human endothelial cells decreases EC proliferation, migration and angiogenesis at baseline and after heat shock recovery. We showed that vascular-independent HSC/P70 multimeric complexes in primary human veins (HUVECs) and coronary artery ECs (HCAECs) accumulate after HS and are decreased by hypoxia. Heat shock recovery increases the number of HSP90 dimers, inducible HSP70, and HSP40 macromolecular complexes, whereas HSC70 returns to baseline. We demonstrated that the heat shock response and hypoxia regulate HSPs through a new layer of complexity, oligomerization, in addition to classical cochaperone/NEF interactions. The biphasic temporal oligomerization of molecular chaperones in the recovery phase provides a novel face of the heat shock response. In addition, shifts in the subcellular location and upregulation of HSP70 were also observed here. The decrease in HSP expression caused by hypoxia raises the possibility that decreased chaperone power contributes to the endothelial dysfunction found in atherosclerosis, thrombosis and cancer. Together, these results show that HSP70 is pivotal to the healthy endothelial response in veins and coronary arteries, and we revealed human HSP dynamics in the vascular response to proteotoxic stress.
    Keywords:  Endothelial cell; HSP70; Heat shock response; Hypoxia; Oligomerization
    DOI:  https://doi.org/10.1016/j.cstres.2025.100085
  2. J Biochem. 2025 May 30. pii: mvaf029. [Epub ahead of print]
      Heme oxygenase-1 (HO-1) is unique to be directly regulated by diverse stress-responsible transcription factors, however, the cross-talk between oxidative stress and heat shock stress has not been completely elucidated. It is widely accepted that HO activity is not induced by heat shock in cultured cells derived from humans and mice but from rats. Previously, we reported that the discrepancies in heat shock-induced HO-1 expression in different animal species were caused by the access of heat shock factor 1 (HSF1) to heat shock element (HSE) in the different region of the HO-1 gene. Recently, we found that the human monocyte-derived cell line THP-1, which has been extensively used to study monocyte/macrophage functions, represents the heat shock induction of HO-1 after differentiation to macrophage-like cells, although not responsible before differentiation. In this study, we demonstrated that heat shock loading to macrophage-like cells derived from THP-1 specifically activated HSF1 to bind to HSE in the promotor region in the HO-1 gene, resulting in the induction of HO-1. Our finding is significant in understanding the regulation system by macrophages for inflammation caused by oxidative insults and associated with hyperthermia in vivo.
    DOI:  https://doi.org/10.1093/jb/mvaf029
  3. Front Mol Biosci. 2025 ;12 1564364
      Hypothermia is a serious condition marked by a significant decrease in core body temperature, posing considerable risks to biological systems. In response to thermal stress, cells activate protective mechanisms, often synthesizing heat shock proteins (HSPs). These highly conserved proteins are crucial in cellular stress responses, primarily functioning as chaperones. HSPs facilitate correct protein folding and prevent misfolding and aggregation, thereby protecting cellular integrity during adverse conditions. This paper explains how HSPs alleviate stress responses related to low body temperature, focusing on energy metabolism, apoptosis, cellular membrane fluidity and stability, and stress signaling pathways. By enhancing cellular repair mechanisms, HSPs help maintain cellular balance and prevent further harm to the organism. Ultimately, the review emphasizes the complex relationship between cellular stress responses and HSPs in hypothermia, highlighting their potential as therapeutic targets for enhancing resistance to the harmful effects of extreme cold exposure. A deeper understanding of these mechanisms could lead to strategies that improve survival rates in hypothermic patients. It may also reveal ways to modulate HSPs' activity for enhanced cellular protection.
    Keywords:  apoptosis; cellular stress; energy metabolism; heat shock proteins; hypothermia
    DOI:  https://doi.org/10.3389/fmolb.2025.1564364
  4. Elife. 2025 May 30. pii: RP93621. [Epub ahead of print]13
      Mitochondria-mediated cell death is critically regulated by bioactive lipids derived from sphingolipid metabolism. The lipid aldehyde trans-2-hexadecenal (t-2-hex) induces mitochondrial dysfunction from yeast to humans. Here, we apply unbiased transcriptomic, functional genomics, and chemoproteomic approaches in the yeast model to uncover the principal mechanisms and biological targets underlying this lipid-induced mitochondrial inhibition. We find that loss of Hfd1 fatty aldehyde dehydrogenase function efficiently sensitizes cells for t-2-hex inhibition and apoptotic cell death. Excess of t-2-hex causes a profound transcriptomic response with characteristic hallmarks of impaired mitochondrial protein import, like activation of mitochondrial and cytosolic chaperones or proteasomal function and severe repression of translation. We confirm that t-2-hex stress induces rapid accumulation of mitochondrial pre-proteins and protein aggregates and subsequent activation of Hsf1- and Rpn4-dependent gene expression. By saturated transposon mutagenesis, we find that t-2-hex tolerance requires an efficient heat shock response and specific mitochondrial and ER functions and that mutations in ribosome, protein, and amino acid biogenesis are beneficial upon t-2-hex stress. We further show that genetic and pharmacological inhibition of protein translation causes t-2-hex resistance, indicating that loss of proteostasis is the predominant consequence of the pro-apoptotic lipid. Several TOM subunits, including the central Tom40 channel, are lipidated by t-2-hex in vitro and mutation of accessory subunits Tom20 or Tom70 confers t-2-hex tolerance. Moreover, the Hfd1 gene dose determines the strength of t-2-hex mediated inhibition of mitochondrial protein import, and Hfd1 co-purifies with Tom70. Our results indicate that the transport of mitochondrial precursor proteins through the outer mitochondrial membrane is sensitively inhibited by the pro-apoptotic lipid and thus represents a hotspot for pro- and anti-apoptotic signaling.
    Keywords:  S. cerevisiae; apoptosis; biochemistry; chemical biology; genetics; genomics; lipid signaling; mitochondrial protein import; proteostasis; sphingolipid metabolism; yeast
    DOI:  https://doi.org/10.7554/eLife.93621
  5. Biomedicines. 2025 May 09. pii: 1146. [Epub ahead of print]13(5):
      Protein functionality depends on its proper folding, making protein misfolding crucial for the function of proteins and, by extension, cells and the whole organism. Increasing evidence supports the role of protein misfolding in the pathogenesis of neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS). ALS is a rapidly progressive disease diagnosed at a prevalence of 5 cases per 100,000, with approximately 2-3 patients per 100,000 diagnosed each year. To date, there is no cure, and the disease usually leads to death within 2 to 5 years from diagnosis. There are two types of the disorder: familial ALS (fALS), accounting for approximately 10% of cases, and sporadic (sALS), accounting for the remaining 90%. The hallmark of ALS, regardless of type, is the protein aggregates found in patients' tissues. This suggests that the disruption of proteostasis plays a critical role in the development of the disease. Herein, we stress the distinct factors that lead to protein misfolding and aggregate formation in ALS. Specifically, we highlight several triggering factors affecting protein misfolding, namely mutations, errors in the processes of protein production and trafficking, and failures of folding and chaperone machinery. Gaining a deeper understanding of protein aggregation will improve our comprehension of disease pathogenesis and potentially uncover new therapeutic approaches.
    Keywords:  aggregation; amyotrophic lateral sclerosis; mutations; prion; protein misfolding; superoxide dismutase 1
    DOI:  https://doi.org/10.3390/biomedicines13051146
  6. Stem Cell Res Ther. 2025 May 28. 16(1): 263
      Aging is a multifactorial biological process characterized by the irreversible accumulation of molecular damage, leading to an increased risk of age-related diseases. With the global prominent rise in aging populations, elucidating the mechanisms underlying the aging process and developing strategies to combat age-related diseases have become a pressing priority. Extracellular vesicles (EVs) have gained significant attention due to their role in intercellular communication. EVs are known for their ability to deliver biocargoes, such as miRNA, proteins, and lipids, implicating their involvement in disease pathogenesis and intervention. In this review article, we explore the dual role of EVs in age-related diseases: contributing to the pathogenesis of diseases by transferring deleterious molecules, while also offering therapeutic ability by transferring beneficial molecules. We also highlight the application of EVs as biomarkers for early diagnosis of age-related diseases, paving the way for early intervention and precision medicine. Additionally, we discuss how analysing the composition of EVs cargo can provide insights into disease progression. Finally, we address the challenges and future perspectives of EV-based-therapy in clinical translation, including standardization of EVs isolation methods and improving cargo specificity.
    Keywords:  Age-related disease; Biomarker; Extracellular vesicles; Pathogenesis; Therapy
    DOI:  https://doi.org/10.1186/s13287-025-04374-7
  7. Cell Commun Signal. 2025 May 30. 23(1): 253
      Extracellular vesicles (EVs) are critical mediators of intercellular communication by transferring proteins, lipid and nucleic acids between cells. EVs in biofluids, particularly blood, have gathered significant interest as potential biomarkers for disease diagnosis. However, isolating EVs from blood poses a challenge due to the high concentration of plasma proteins, which obscure the detection of low abundant EV-associated proteins. Here, we optimized a simplified and efficient method for isolating plasma-derived EVs by combining size exclusion chromatography (SEC) with flow-through chromatography using Capto Core 700 beads. A brief incubation of SEC-derived EV fractions with Capto Core beads (qEV + CC) enabled us to isolate intact, high-purity EVs with reduced soluble plasma protein contamination. As a comparison, MagReSyn-based method was not compatible with elution of intact EVs after the purification and showed significant contamination of soluble plasma proteins. Data-independent acquisition-based liquid chromatography-mass spectrometry of isolated plasma-EVs using the qEV + CC approach identified over 1,000 EV-associated proteins, including an increased presence of brain derived proteins and markers linked to neurodegenerative diseases, such as amyloid precursor protein and apolipoprotein E. These findings were further validated by super-resolution microscopy at a single EV resolution. Bioinformatic pathway and network analyses revealed enrichment of pathways involved in RNA processing, cell adhesion and synaptic function, highlighting the potential of EV molecules for broad disease biomarker discovery. Our findings present an optimized method for efficient purification of plasma-derived EVs, providing a valuable tool for advancing EV-based biomarker development.
    Keywords:  Biomarker; Capto core 700 bead; Data-independent-acquisition mass spectrometry; Extracellular vesicle; Neurodegenerative disorders; Plasma
    DOI:  https://doi.org/10.1186/s12964-025-02263-3
  8. Animals (Basel). 2025 May 16. pii: 1443. [Epub ahead of print]15(10):
      Chinese tongue sole (Cynoglossus semilaevis) is an important marine fish in China. It has sexual dimorphism. The weight and growth rate of female fish are much greater than those of male fish. However, high temperatures can induce sex reversal in genetic female fish (ZW) to phenotypic male fish; thus, identifying the genetic elements involved in temperature perception will provide the molecular basis for sex control. The heat shock transcription factor (hsf) is known as an important component of temperature sensing and mediates the heat shock response in fish such as Danio rerio; however, its function in C. semilaevis is unclear. In this study, five hsf genes (hsf1, hsf2, hsf4, hsf5a, and hsf5b) were identified in tongue sole and found to be expressed in the gonads at different developmental stages, peaking from 7M to 1Y. Gonadal in situ hybridization revealed that hsf gene signals were mainly localized in germ cells, e.g., sperm in the testis and all-stage oocytes in the ovary. Upon high-temperature stimulation, the expression of the hsf gene in the gonads increased gradually with increasing stimulation time, but different hsf genes presented different response patterns. After the RNA interference of hsf in the testis and ovarian cell lines, a series of sex-related genes, such as foxl2 and dmrt1, significantly changed. In vivo RNA interference had an effect on the female gonads and mainly affected neurl3 expression. On the basis of these data, we speculate that hsf responds to temperature stimulation and plays an important role in sex differentiation. This study helps elucidate the relationship between temperature sensing and sex differentiation in C. semilaevis.
    Keywords:  Chinese tongue sole; expression pattern; hsf; sex differentiation; siRNA knockdown
    DOI:  https://doi.org/10.3390/ani15101443
  9. Int J Mol Sci. 2025 May 14. pii: 4676. [Epub ahead of print]26(10):
      Exosomes are extracellular vesicles secreted by almost all types of cells. Their release allows for the transport of specific regulatory cargo into the recipient cells and the modulation of their activity. Vesicular communication has also been identified as an important mechanism for the regulation of numerous cellular activities in the brain tissue, contributing to proper neuronal functions and brain homeostasis. In this work, we focus on the role of exosomes and extracellular vesicles in the communication between astrocytes and brain endothelial cells, two major components of the blood-brain barrier. We perform a comprehensive review of the latest studies highlighting the role of exosomes in astrocyte-endothelial cell crosstalk within the blood-brain barrier. We have also described the role of particular exosomal miRNAs in the regulation of astrocytes and brain endothelial cell functions, and discuss some future implications.
    Keywords:  CNS; astrocytes; blood–brain barrier; endothelial cells; exosomes; extracellular vesicles; intercellular signaling; miRNA; neurodegeneration; neuroinflammation
    DOI:  https://doi.org/10.3390/ijms26104676