Eur J Pharmacol. 2021 Feb 22. pii: S0014-2999(21)00085-6. [Epub ahead of print]
173932
We aimed to investigate the role and mechanism of sevoflurane (SEV) preconditioning in liver ischemia-reperfusion (I/R) injury. In vivo, rats were randomly divided into Sham group, I/R rat model group, I/R + SEV group and SEV group. In vitro, hypoxia-reoxygenation (H/R) cell model were established. Hematoxylin-Eosin (H&E) and TUNEL assay were used to evaluate the degree of tissue damage and detect apoptosis in rats, respectively. HO-1, nuclear Nrf2 and cytosolic Nrf2 expressions were detected by immunohistochemical staining, Western blot analysis and quantitative real-time PCR (qRT-PCR), respectively. Contents of Lactate dehydrogenase (LDH), malondialdehyde (MDA), and reactive oxygen species (ROS) were determined by corresponding kits. Inflammatory factor levels, cell viability, apoptosis were detected by enzyme-linked immunosorbent assay (ELISA), MTT assay, and flow cytometry, respectively.In the I/R group, liver damage was severe, apoptosis-positive cells were increased, HO-1 and nuclear Nrf2 expressions were increased, and cytosolic Nrf2 expression was decreased. After SEV pretreatment, the degree of liver injury and apoptosis in rats were significantly reduced, HO-1 and nuclear Nrf2 expressions were increased significantly, and cytosolic Nrf2 expression was decreased. 4% SEV had the best mitigating effect on H/R-induced liver cell damage, as evidenced by reduced contents of LDH and MDA, decreased inflammatory factors, a lowered apoptosis rate, inhibited ROS production, effectively promoted Nrf2 nucleation, and activated Nrf/HO-1 pathway. ML385 pretreatment significantly inhibited the effect of SEV on hepatocytes.Sevoflurane protects the liver from ischemia-reperfusion injury by regulating the Nrf2/HO-1 pathway.
Keywords: Nrf2; hypoxia-reoxygenation; ischemia-reperfusion; liver; sevoflurane