bims-hafaim Biomed News
on Heart failure metabolism
Issue of 2024–11–10
three papers selected by
Kyle McCommis, Saint Louis University



  1. ESC Heart Fail. 2024 Nov 05.
       BACKGROUND AND AIMS: The heart is a metabolic organ rich in mitochondria. The failing heart reprograms to utilize different energy substrates, which increase its oxygen consumption. These adaptive changes contribute to increased oxidative stress. Hypertrophic cardiomyopathy (HCM) is a common heart condition, affecting approximately 15% of the general cat population. Feline HCM shares phenotypical and genotypical similarities with human HCM, but the disease mechanisms for both species are incompletely understood. Our goal was to characterize global changes in metabolome between healthy control cats and cats with different stages of HCM.
    METHODS: Serum samples from 83 cats, the majority (70/83) of which were domestic shorthair and included 23 healthy control cats, 31 and 12 preclinical cats with American College of Veterinary Internal Medicine (ACVIM) stages B1 and B2, respectively, and 17 cats with history of clinical heart failure or arterial thromboembolism (ACVIM stage C), were collected for untargeted metabolomic analysis. Multiple linear regression adjusted for age, sex and body weight was applied to compare between control and across HCM groups.
    RESULTS: Our study identified 1253 metabolites, of which 983 metabolites had known identities. Statistical analysis identified 167 metabolites that were significantly different among groups (adjusted P < 0.1). About half of the differentially identified metabolites were lipids, including glycerophospholipids, sphingolipids and cholesterol. Serum concentrations of free fatty acids, 3-hydroxy fatty acids and acylcarnitines were increased in HCM groups compared with control group. The levels of creatine phosphate and multiple Krebs cycle intermediates, including succinate, aconitate and α-ketoglutarate, also accumulated in the circulation of HCM cats. In addition, serum levels of nicotinamide and tryptophan, precursors for de novo NAD+ biosynthesis, were reduced in HCM groups versus control group. Glutathione metabolism was altered. Serum levels of cystine, the oxidized form of cysteine and cysteine-glutathione disulfide, were elevated in the HCM groups, indicative of heightened oxidative stress. Further, the level of ophthalmate, an endogenous glutathione analog and competitive inhibitor, was increased by more than twofold in HCM groups versus control group. Finally, several uremic toxins, including guanidino compounds and protein bound putrescine, accumulated in the circulation of HCM cats.
    CONCLUSIONS: Our study provided evidence of deranged energy metabolism, altered glutathione homeostasis and impaired renal uremic toxin excretion. Altered lipid metabolism suggested perturbed structure and function of cardiac sarcolemma membrane and lipid signalling.
    Keywords:  NAD; energy metabolism; feline; glutathione; lipid; uremic toxin
    DOI:  https://doi.org/10.1002/ehf2.15135
  2. Metabolism. 2024 Nov 03. pii: S0026-0495(24)00287-7. [Epub ahead of print] 156059
      Metabolic stress in the myocardium arises from a diverse array of acute and chronic pathophysiological contexts. Glycogen mishandling is a key feature of metabolic stress, while maladaptation in energy-stress situations confers functional deficits. Cardiac glycogen serves as a pivotal reserve for myocardial energy, which is classically described as an energy source and contributes to glucose homeostasis during hypoxia or ischemia. Despite extensive research activity, how glycogen metabolism affects cardiovascular disease remains unclear. In this review, we focus on its regulation across myocardial energy metabolism in response to stress, and its role in metabolism, immunity, and autophagy. We further summarize the cardiovascular-related drugs regulating glycogen metabolism. In this way, we provide current knowledge for the understanding of glycogen metabolism in the myocardium.
    Keywords:  Autophagy; Cardiac glycogen; Glycolysis; Immune regulation; Lipid metabolism; Metabolic stress; Mitochondrial function
    DOI:  https://doi.org/10.1016/j.metabol.2024.156059
  3. Cardiovasc Res. 2024 Nov 05. pii: cvae238. [Epub ahead of print]
       AIMS: Sterile inflammation is implicated in the development of heart failure (HF). Mitochondria plays important roles in triggering and maintaining inflammation. Mitophagy is important for regulation of mitochondrial quality and maintenance of cardiac function under pressure overload. The association of mitophagy with inflammation in HF is largely unclear. As PINK1 is a central mediator of mitophagy, our objective was to investigate its involvement in cardiac hypertrophy, and the effect of PINK1-mediated mitophagy on cGAS-STING activation during cardiac hypertrophy.
    METHODS AND RESULTS: PINK1 knockout and cardiac-specific PINK1-overexpressing transgenic mice were created and subsequently subjected to transverse aortic constriction (TAC) surgery. In order to explore whether PINK1 regulates STING-mediated inflammation during HF, PINK1/STING (stimulator of interferon genes) double-knockout mice were created. Pressure overload was induced by TAC. Our findings indicate a significantly decline in PINK1 expression in TAC-induced hypertrophy. Cardiac hypertrophic stimuli caused the release of mitochondrial DNA (mtDNA) into the cytosol, activating the cGAS-STING signaling, which in turn initiated cardiac inflammation and promoted the progression of cardiac hypertrophy. PINK1 deficiency inhibited mitophagy activity, promoted mtDNA release, and then drove the overactivation of cGAS-STING signaling, exacerbating cardiac hypertrophy. Conversely, cardiac-specific PINK1 overexpression protected against hypertrophy thorough inhibition of the cGAS-STING signaling. Double-knockout mice revealed that the effects of PINK1 on hypertrophy were dependent on STING.
    CONCLUSIONS: Our findings suggest that PINK1-mediated mitophagy plays a protective role in pressure overload-induced cardiac hypertrophy via inhibiting the mtDNA-cGAS-STING pathway.
    Keywords:  Mitophagy; PINK1; STING; cardiac hypertrophy; inflammation
    DOI:  https://doi.org/10.1093/cvr/cvae238