bims-hafaim Biomed News
on Heart failure metabolism
Issue of 2022–08–07
four papers selected by
Kyle McCommis, Saint Louis University



  1. Physiol Rep. 2022 Aug;10(15): e15415
      Left ventricular diastolic dysfunction is a structural and functional condition that precedes the development of heart failure with preserved ejection fraction (HFpEF). The etiology of diastolic dysfunction includes alterations in fuel substrate metabolism that negatively impact cardiac bioenergetics, and may precipitate the eventual transition to heart failure. To date, the molecular mechanisms that regulate early changes in fuel metabolism leading to diastolic dysfunction remain unclear. In this report, we use a diet-induced obesity model in aged mice to show that inhibitory lysine acetylation of the pyruvate dehydrogenase (PDH) complex promotes energetic deficits that may contribute to the development of diastolic dysfunction in mouse hearts. Cardiomyocyte-specific deletion of the mitochondrial lysine acetylation regulatory protein GCN5L1 prevented hyperacetylation of the PDH complex subunit PDHA1, allowing aged obese mice to continue using pyruvate as a bioenergetic substrate in the heart. Our findings suggest that changes in mitochondrial protein lysine acetylation represent a key metabolic component of diastolic dysfunction that precedes the development of heart failure.
    Keywords:  acetylation; diastolic dysfunction; heart failure; mitochondria; pyruvate dehydrogenase
    DOI:  https://doi.org/10.14814/phy2.15415
  2. Front Cell Dev Biol. 2022 ;10 866210
      High-fat diet (HFD)-induced obesity has become the major risk factor for the development of cardiovascular diseases, but the underlying mechanisms remain poorly understood. Here, we use Drosophila as a model to study the role of mTORC2 in HFD-induced mitochondrial fission and cardiac dysfunction. We find that knockdown of mTORC2 subunit rictor blocks HFD-induced mitochondrial fragmentation and Drp1 recruitment. Knockdown of rictor further impairs cardiac contractile function under HFD treatment. Surprisingly, knockdown of Akt, the major effector of mTORC2, did not affect HFD-induced mitochondrial fission. Similar to mTORC2 inhibition, knockdown of Drp1 blocks HFD-induced mitochondrial fragmentation and induces contractile defects. Furthermore, overexpression of Drp1 restored HFD-induced mitochondrial fragmentation in rictor knockdown flies. Thus, we uncover a novel function of mTORC2 in protecting the heart from HFD treatment through Drp1-dependent mitochondrial fission.
    Keywords:  Akt; DRP1; Drosophila cardiomyopathy; mitochondrial dynamics; mitochondrial homeostasis; rictor; semi-automatic optical heartbeat analysis (SOHA)
    DOI:  https://doi.org/10.3389/fcell.2022.866210
  3. Cardiovasc Diabetol. 2022 Aug 05. 21(1): 146
       BACKGROUND: High glycated-hemoglobin (HbA1c) levels correlated with an elevated risk of adverse cardiovascular outcomes despite renin-angiotensin system (RAS) inhibition in type-2 diabetic (T2DM) patients with reduced ejection fraction. Using the routine biopsies of non-T2DM heart transplanted (HTX) in T2DM recipients, we evaluated whether the diabetic milieu modulates glycosylated ACE2 (GlycACE2) levels in cardiomyocytes, known to be affected by non-enzymatic glycosylation, and the relationship with glycemic control.
    OBJECTIVES: We investigated the possible effects of GlycACE2 on the anti-remodeling pathways of the RAS inhibitors by evaluating the levels of Angiotensin (Ang) 1-9, Ang 1-7, and Mas receptor (MasR), Nuclear-factor of activated T-cells (NFAT), and fibrosis in human hearts.
    METHODS: We evaluated 197 first HTX recipients (107 non-T2DM, 90 T2DM). All patients were treated with angiotensin-converting enzyme inhibitor (ACE-I) or angiotensin receptor blocker (ARB) at hospital discharge. Patients underwent clinical evaluation (metabolic status, echocardiography, coronary CT-angiography, and endomyocardial biopsies). Biopsies were used to evaluate ACE2, GlycACE2, Ang 1-9, Ang 1-7, MasR, NAFT, and fibrosis.
    RESULTS: GlycACE2 was higher in T2DM compared tonon-T2DM cardiomyocytes. Moreover, reduced expressions of Ang 1-9, Ang 1-7, and MasR were observed, suggesting impaired effects of RAS-inhibition in diabetic hearts. Accordingly, biopsies from T2DM recipients showed higher fibrosis than those from non-T2DM recipients. Notably, the expression of GlycACE2 in heart biopsies was strongly dependent on glycemic control, as reflected by the correlation between mean plasma HbA1c, evaluated quarterly during the 12-month follow-up, and GlycACE2 expression.
    CONCLUSION: Poor glycemic control, favoring GlycACE2, may attenuate the cardioprotective effects of RAS-inhibition. However, the achievement of tight glycemic control normalizes the anti-remodeling effects of RAS-inhibition.
    TRIAL REGISTRATION: https://clinicaltrials.gov/ NCT03546062.
    Keywords:  Diabetes; Diabetic cardiomyopathy; HbA1c; Heart transplantation; RAS-inhibition therapy
    DOI:  https://doi.org/10.1186/s12933-022-01573-x
  4. Biomed Res Int. 2022 ;2022 9687345
       Background: Dapagliflozin can significantly improve heart failure, and Cx43 is one of the molecular mechanisms of heart failure. This study investigated the effect of dapagliflozin on Cx43 and Akt/mTOR signaling pathway in ventricular myocytes.
    Methods: A rat model of type 2 diabetes mellitus was established by high-fat diet combined with streptozotocin, and the animals were treated randomly with dapagliflozin. The morphological changes of the myocardium were observed by hematoxylin eosin staining, and the expression and distribution of Cx43 in ventricular myocytes were detected by immunohistochemistry. And Western blot determined the expressions of Cx43, Akt, mTOR, p62, and LC3 proteins in rat myocardium.
    Results: Compared with the normal control group, the heart rate of diabetic rats decreased significantly (p < 0.05), QRS wave of ECG widened, and QT interval prolonged (p < 0.05). Dapagliflozin treatment in diabetic rats resulted in improvements in these ECG indexes (p < 0.05) with early administration group obtaining greater efficacy than the late administration group (p < 0.05). In the normal control group, the cardiomyocytes were arranged orderly, and the expression of Cx43 was dense, uniform, and regular, which was higher than that in the intercalated disc. In the diabetic control model group, the cardiomyocytes were enlarged and presented disorderly with detection of Cx43 in the cytoplasm. Early use of dapagliflozin better improved these myocardial tissue lesions. Of note, as diabetic rats exhibited decreased expression of Cx43, Akt, and mTOR (p < 0.05), increased p62 expression (p < 0.05), and decreased LC3-II/I ratio (p < 0.05), administration of dapagliflozin partially reversed the expression of the above proteins (p < 0.05) with greater improvement in the early administration group compared with the late administration group (p < 0.05).
    Conclusions: Dapagliflozin increases the expression of Cx43 in cardiomyocytes of diabetic rats and thereby alleviates heart failure partly through regulating the Akt/mTOR signaling pathway.
    DOI:  https://doi.org/10.1155/2022/9687345