bims-hafaim Biomed News
on Heart failure metabolism
Issue of 2022–02–27
thirteen papers selected by
Kyle McCommis, Saint Louis University



  1. Cell Biol Toxicol. 2022 Feb 26.
      Persistent myocardial hypertrophy frequently leads to heart failure (HF). Intramyocardial triacylglycerol (TAG) accumulation is closely related with cardiac remodeling and abnormal contractile function. Adipose triglyceride lipase (ATGL), a key enzyme in TAG metabolism, regulates cardiac function. However, its associated molecular pathways have not been fully defined. Here, cardiac hypertrophy and HF were induced in wild-type (WT) or ATGL knockout (KO) mice through transverse aortic constriction (TAC) for up to 4 weeks. TAC in WT mice significantly reduced cardiac function and autophagy while enhancing left ventricular hypertrophy, interstitial fibrosis, inflammatory response, superoxide generation, and cardiomyocyte apoptosis, accompanied with upregulation of the proteasome activity, reduction of PTEN level and activation of AKT-mTOR signaling, and these effects were further aggravated in ATGL KO mice. Interestingly, ATGL KO-mediated cardiac dysfunction and remodeling were markedly reversed by proteasome inhibitor (epoxomicin) or autophagic activator (rapamycin), but accelerated by PTEN inhibitor (VO-OHpic) or autophagy inhibitor 3-MA. Mechanistically, ATGL KO upregulated proteasome expression and activity, which in turn mediates PTEN degradation leading to activation of AKT-mTOR signaling and inhibition of autophagy, thereby enhancing hypertrophic remodeling and HF. In conclusion, ATGL KO contributes to TAC-induced cardiac dysfunction and adverse remodeling probably associated with the proteasome-PTEN-mTOR-autophagy pathway. Therefore, modulation of this pathway may have a therapeutic effect potential for hypertrophic heart disease. TAC-induced downregulation of ATGL results in increased proteasome (β1i/β2i/β5i) activity, which in turn promotes degradation of PTEN and activation of AKT-mTOR signaling and then inhibits autophagy and ATP production, thereby leading to cardiac hypertrophic remodeling and dysfunction. Conversely, blocking proteasome activity or activating autophagy attenuates these effects.
    Keywords:  ATGL; Autophagy; Cardiac remodeling; PTEN; Proteasome; mTOR
    DOI:  https://doi.org/10.1007/s10565-022-09699-0
  2. Cardiol Rev. 2021 Oct 18.
      Recent clinical trials have highlighted the profound benefits of Sodium-glucose linked transporter 2 inhibitors (SGLT2i) on cardiovascular mortality and hospitalization for heart failure patients. Modest improvements in glycemic, lipid or blood pressure control are unlikely to contribute to these significant beneficial outcomes, generating much interest in the relevant mechanisms leading to outcome improvements. In this review, we discuss the current evidence supporting a shift in myocardial substrate utilization from carbohydrates and fat oxidation towards energy efficient ketone bodies in the failing heart and the role of SGLT2i in this key metabolic adaptation to optimize myocardial fuel energetics. Further insights into the effect of SGLT2i on the indices of cardiorespiratory fitness are outlined and provide important clues into their mechanism of benefit. This mechanistic discussion in the context of recent trials of SGLT2i denotes a promising treatment paradigm of heart failure in individuals with and without diabetes.
    DOI:  https://doi.org/10.1097/CRD.0000000000000424
  3. Acta Pharmacol Sin. 2022 Feb 25.
      Latest clinical research shows that trimetazidine therapy during the perioperative period relieves endothelial dysfunction in patients with unstable angina induced by percutaneous coronary intervention. In this study we investigated the effects of TMZ on myocardial angiogenesis in pressure overload-induced cardiac hypertrophy mice. Cardiac hypertrophy was induced in mice by transverse aortic constriction (TAC) surgery. TAC mice were administered trimetazidine (2.8 mg/100 µL, i.g.) for 28 consecutive days. We showed that trimetazidine administration significantly increased blood vessel density in the left ventricular myocardium and abrogated cardiac dysfunction in TAC mice. Co-administration of a specific HSF1 inhibitor KRIBB11 (1.25 mg/100 µL, i.h.) abrogated the angiogenesis-promoting effects of trimetazidine in TAC mice. Using luciferase reporter and electrophoretic mobility shift assays we demonstrated that the transcription factor HSF1 bound to the promoter region of VEGF-A, and the transcriptional activity of HSF1 was enhanced upon trimetazidine treatment. In molecular docking analysis we found that trimetazidine directly bound to Akt via a hydrogen bond with Asp292 and a pi-pi bond with Trp80. In norepinephrine-treated HUVECs, we showed that trimetazidine significantly increased the phosphorylation of Akt and the synergistic nuclear translocation of Akt and HSF1, as well as the binding of Akt and HSF1 in the nucleus. These results suggest that trimetazidine enhances myocardial angiogenesis through a direct interaction with Akt and promotion of nuclear translocation of HSF1, and that trimetazidine may be used for the treatment of myocardial angiogenic disorders in hypertensive patients.
    Keywords:  Akt; HSF1; VEGF-A; cardiac angiogenesis; pressure overload-induced cardiac hypertrophy; trimetazidine
    DOI:  https://doi.org/10.1038/s41401-022-00877-8
  4. Int J Mol Sci. 2022 Feb 16. pii: 2182. [Epub ahead of print]23(4):
      Lipid overload contributes to cardiac complications of diabetes and obesity. However, the underlying mechanisms remain obscure. This study investigates the role of gamma-aminobutyrate transaminase (ABAT), the key enzyme involved in the catabolism of γ-aminobutyric acid (GABA), in lipid overload-induced cardiac injury. Microarray revealed a down-regulation of ABAT mRNA expression in high fat diet (HFD)-fed mouse hearts, which correlated with a reduction in ABAT protein level and its GABA catabolic activity. Transgenic mice with cardiomyocyte-specific ABAT over-expression (Tg-ABAT/tTA) were generated to determine the role of ABAT in lipid overload-induced cardiac injury. Feeding with a HFD to control mice for 4 months reduced ATP production and the mitochondrial DNA copy number, and induced myocardial oxidative stress, hypertrophy, fibrosis and dysfunction. Such pathological effects of HFD were mitigated by ABAT over-expression in Tg-ABAT/tTA mice. In cultured cardiomyocytes, palmitate increased mitochondrial ROS production, depleted ATP production and promoted apoptosis, all of which were attenuated by ABAT over-expression. With the inhibition of ABAT's GABA catabolic activity, the protective effects of ABAT remained unchanged in palmitate-induced cardiomyocytes. Thus, ABAT protects the mitochondrial function in defending the heart against lipid overload-induced injury through mechanisms independent of its GABA catabolic activity, and may represent a new therapeutic target for lipid overload-induced cardiac injury.
    Keywords:  ABAT; ROS; apoptosis; cardiomyocytes; heart dysfunction; lipid overload; mitochondrial dysfunction
    DOI:  https://doi.org/10.3390/ijms23042182
  5. Bioengineered. 2022 Feb;13(2): 4260-4270
      Cardiac hypertrophy results from the adaptive response of the myocardium to pressure overload on the heart. Tanshinone IIA (Tan IIA) is the major active compound extracted from Salvia miltiorrhiza Bunge, which possesses various pharmacological benefits. In the present study, the effect and mechanism of action of Tan IIA on cardiac hypertrophy were studied. Ang II-induced and transverse aortic constriction (TAC)-induced cardiomyocyte hypertrophy models were used to evaluate the effect of Tan IIA. An adenoviral vector system was utilized to overexpress galectin-3. The results revealed that Tan IIA significantly inhibited Ang II-induced hypertrophy in vitro and TAC-induced cardiac hypertrophy in vivo. Furthermore, Tan IIA notably inhibited the expression of galectin-3. Rescue experiments indicated that galectin-3 overexpression reversed the effects of Tan IIA, which further validated the interaction between Tan IIA and galectin-3. Additionally, Tan IIA suppressed alkB homolog 5, RNA demethylase (ALKBH5)-mediated N6-methyladenosine (m6A) modification of galectin-3. In summary, the results of the present study indicated that Tan IIA attenuates cardiac hypertrophy by targeting galectin-3, suggesting that galectin-3 plays a critical role in cardiac hypertrophy and represents a new therapeutic target.
    Keywords:  N6-methyladenosine; RNA demethylase; Tanshinone IIA; alkB homolog 5; cardiac hypertrophy; galectin-3
    DOI:  https://doi.org/10.1080/21655979.2022.2031388
  6. Biomolecules. 2022 Feb 08. pii: 272. [Epub ahead of print]12(2):
      Cardiovascular diseases are the leading cause of death in people with diabetes. Diabetic cardiomyopathy (DC) is an important complication of diabetes and represents a distinct subtype of heart failure that occurs in absence of cardiovascular diseases. Chronic hyperglycemia and hyperinsulinemia along with insulin resistance and inflammatory milieu are the main mechanisms involved in the pathophysiology of DC. Changes in lifestyle favoring healthy dietary patterns and physical activity, combined with more innovative anti-diabetes therapies, are the current treatment strategies to safeguard the cardiovascular system. This review aims at providing an updated comprehensive overview of clinical, pathogenetic, and molecular aspects of DC, with a focus on the effects of anti-hyperglycemic drugs on the prevention of pump dysfunction and consequently on cardiovascular health in type 2 diabetes.
    Keywords:  cardiovascular disease; diabetic cardiomyopathy; glucose control; glucose-lowering agents; heart failure; type 2 diabetes
    DOI:  https://doi.org/10.3390/biom12020272
  7. Metabolites. 2022 Feb 18. pii: 189. [Epub ahead of print]12(2):
      Magnetic resonance spectroscopy (MRS) is a non-invasive and non-ionizing technique, enabling in vivo investigation of cardiac metabolism in normal and diseased hearts. In vivo measurement tools are critical for studying mechanisms that regulate cardiac energy metabolism in disease developments and to assist in early response assessments to novel therapies. For cardiac MRS, proton (1H), phosphorus (31P), and hyperpolarized 13-carbon (13C) provide valuable metabolic information for diagnosis and treatment assessment purposes. Currently, low sensitivity and some technical limitations limit the utility of MRS. An essential step in translating MRS for clinical use involves further technological improvements, particularly in coil design, improving the signal-to-noise ratios, field homogeneity, and optimizing radiofrequency sequences. This review addresses the recent advances in metabolic imaging by MRS from primarily the literature published since 2015.
    Keywords:  bioenergetics; creatine kinase; heart failure; metabolic disorders; oxidative metabolism
    DOI:  https://doi.org/10.3390/metabo12020189
  8. Eur J Heart Fail. 2022 Feb 23.
       AIMS: Iron deficiency (ID) is prevalent and adverse in chronic heart failure (CHF) but few human studies have explored the myocardial mechanism(s) that potentially underlie this adversity. Because mitochondrial oxidative phosphorylation (OXPHOS) provides over 90% of the hearts adenosine triphosphate (ATP), and iron is critical for OXPHOS, we hypothesised that patients with CHF and ID would harbour greater cardiac energetic impairments than patients without ID.
    METHODS AND RESULTS: Phosphorous magnetic resonance spectroscopy (31 P-MRS) was used to quantify the phosphocreatine (PCr) to ATP (PCr/ATP) ratio, an index of in-vivo cardiac energetics, in CHF patients and healthy volunteers. Cardiac structure and function was assessed from magnetic resonance short stack cines. Patients with (n = 27) and without (n = 12) ID, and healthy volunteers (n = 11), were similar with respect to age and gender. The PCr/ATP ratio was lower in patients with ID (1.03 [0.83, 1.38]) compared to those without ID (1.72 [1.51, 2.26], P < 0.01) and healthy volunteers (1.39 [1.10, 3.68], P < 0.05). This was despite no difference in cardiac structure and function between patients with and without ID, and despite adjustment for the presence of anaemia, Hb levels, cardiac rhythm, or NYHA class. In the total CHF cohort, the PCr/ATP ratio correlated with ferritin levels (rho = 0.4, P < 0.01), and was higher in NYHA class I than class II or III patients (P = 0.02).
    CONCLUSION: Iron deficiency is associated with greater cardiac energetic impairment in patients with CHF irrespective of anaemia and cardiac structure and function. Suppression of cardiac mitochondrial function might therefore be a mechanism via which ID worsens human CHF. This article is protected by copyright. All rights reserved.
    Keywords:  Cardiac Energetics; Heart Failure; Iron; Spectroscopy
    DOI:  https://doi.org/10.1002/ejhf.2454
  9. Phytomedicine. 2022 Feb 18. pii: S0944-7113(22)00087-3. [Epub ahead of print]99 154009
       BACKGROUND: Mitophagy can regulate mitochondrial homeostasis, preserve energy metabolism and cardiomyocytes survival effectively to restrain the development of heart failure (HF). Danqi Pill (DQP), composed of the dry roots of Salvia miltiorrhiza Bunge and Panax notoginseng, is included in the 2015 national pharmacopeia and effective in the clinical treatment of coronary heart diseases. Our previous studies have approved that DQP exerted remarkable cardioprotective effects on HF. However, the effect and mechanism of DQP on mitophagy have not been proved yet.
    HYPOTHESIS/PURPOSE: We aim to explore whether DQP regulates mitophagy to protect against HF and to elucidate the in-depth mechanism.
    STUDY DESIGN: The HF rat model for evaluating DQP's efficacy was established with left anterior descending coronary artery ligation. The oxygen-glucose deprivation-reperfusion-induced cardiomyocyte model was conducted to clarify the potential mechanism of DQP.
    METHODS: The mitochondria-targeted fluorescent protein Keima (mt-Keima) was applied for detecting mitophagy flux. Co-immunofluorescence and co-immunoprecipitation were performed to detect protein co-localization. Flow cytometry for JC-1 and Annexin-FITC/PI staining was utilized for assessing mitochondrial activity and function.
    RESULTS: In vivo, medium dose of DQP (1.5 g/kg) notably improved cardiac function and inhibited cardiac apoptosis in HF rats. Co-immunofluorescent staining of LC3B and TOM20 showed that DQP restored mitophagy. Further co-immunoprecipitation demonstrated that DQP increased the co-localization of FUNDC1 with either ULK1 or PGAM5. In vitro, DQP markedly protected mitochondrial membrane potential damage, reduced cardiomyocytes apoptosis, decreased the level of mitochondrial ROS, and increased the ATP level. Parallel with the in vitro results, DQP increased the interaction of FUNDC1 and LC3B, while knockdown of FUNDC1 diminished the interaction. Besides, Mt-Keima signaling detection further confirmed that DQP significantly promoted mitophagy. Intriguingly, knockdown of ULK1 or PGAM5 separately weakened rather than eliminated these effects of DQP on FUNDC1-mediated mitophagy, mitochondrial homeostasis and energy metabolism.
    CONCLUSION: Our results demonstrated that DQP protected against HF by improving FUNDC1-mediated mitophagy to perverse energy metabolism through the coordinated regulation of ULK1 and PGAM5.
    Keywords:  Danqi pill; Energy metabolism; Heart failure; Mitochondria homeostasis; Mitophagy; ULK1/PGAM5-FUNDC1
    DOI:  https://doi.org/10.1016/j.phymed.2022.154009
  10. Molecules. 2022 Feb 16. pii: 1346. [Epub ahead of print]27(4):
      Acute β-adrenergic stimulation contributes to heart failure. Here, we investigated the role of p53 in isoproterenol (ISO)-mediated metabolic and oxidative stress effects on cardiomyocytes and explored the direct protective effects offered by the antioxidant nutraceutical curcumin. Differentiated H9C2 rat cardiomyocytes treated with ISO were assayed for glucose uptake, lactate release, and mitochondrial reactive oxygen species (ROS) generation. Survival was assessed by sulforhodamine B assays. Cardiomyocytes showed significantly decreased glucose uptake and lactate release, as well as increased cellular toxicity by ISO treatment. This was accompanied by marked dose-dependent increases of mitochondria-derived ROS. Scavenging with N-acetyl-L-cysteine (NAC) effectively lowered ROS levels, which completely recovered glycolytic metabolism and survival suppressed by ISO. Mechanistically, ISO reduced extracellular-signal-regulated kinase (ERK) activation, whereas it upregulated p53 expression in an ROS-dependent manner. Silencing of p53 with siRNA blocked the ability of ISO to stimulate mitochondrial ROS and suppress glucose uptake, and partially recovered cell survival. Finally, curcumin completely reversed the metabolic and ROS-stimulating effects of ISO. Furthermore, curcumin improved survival of cardiomyocytes exposed to ISO. Thus, ISO suppresses cardiomyocyte glycolytic metabolism and survival by stimulating mitochondrial ROS in a p53-dependent manner. Furthermore, curcumin can efficiently rescue cardiomyocytes from these adverse effects.
    Keywords:  cardiomyocyte; curcumin; isoproterenol-induced cardiotoxicity; p53; reactive oxygen species
    DOI:  https://doi.org/10.3390/molecules27041346
  11. Eur J Pharmacol. 2022 Feb 21. pii: S0014-2999(22)00107-8. [Epub ahead of print] 174846
      Oxidative stress plays a crucial role in the pathophysiology of diastolic dysfunction associated with diabetic cardiomyopathy. Novel oral edaravone (OED) alleviates oxidative stress by scavenging free radicals and may be suitable for the treatment of chronic diseases such as diabetic cardiomyopathy. Oral administration of OED to type 2 diabetic rats (induced by high-sugar/high-fat diet and intraperitoneal injection of streptozotocin) for 4 w decreased malondialdehyde and increased superoxide dismutase. Moreover, it significantly improved ratios of early to late diastolic peak velocity, myocardium hypertrophy accompanied by decreased cross-sectional areas of cardiomyocytes, the proportion of apoptotic cells, collagen volume fractions, and deposition of collagen I/III. In H9c2 cells, OED reduced reactive oxygen species, cell surface area, and numbers of terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells induced by glucolipotoxicity. OED remarkably upregulated expression of the nuclear factor E2-related factor (Nrf2) signaling pathway both in vivo and in vitro. In addition, OED promoted Nrf2 nuclear translocation and upregulated nicotinamide adenine dinucleotide phosphate quinone oxidoreductase and heme oxygenase. Silencing of Nrf2 abolished the protective effect of OED in H9c2 cells. Our findings demonstrate that OED has the therapeutic potential to ameliorate diastolic dysfunction associated with diabetic cardiomyopathy. Its effect was mainly achieved by attenuating hyperglycemia and hyperlipidemia-induced cardiomyocyte hypertrophy, apoptosis, and fibrosis by activating the Nrf2 signaling pathway.
    Keywords:  Diabetic cardiomyopathy; Diastolic dysfunction; Novel oral edaravone; Nrf2 signaling pathway; Oxidative stress
    DOI:  https://doi.org/10.1016/j.ejphar.2022.174846
  12. Diabetologia. 2022 Feb 25.
       AIMS/HYPOTHESIS: Diabetic cardiomyopathy (DCM) is a serious and under-recognised complication of diabetes. The first sign is diastolic dysfunction, which progresses to heart failure. The pathophysiology of DCM is incompletely understood but microcirculatory changes are important. Endothelial glycocalyx (eGlx) plays multiple vital roles in the microcirculation, including in the regulation of vascular permeability, and is compromised in diabetes but has not previously been studied in the coronary microcirculation in diabetes. We hypothesised that eGlx damage in the coronary microcirculation contributes to increased microvascular permeability and hence to cardiac dysfunction.
    METHODS: We investigated eGlx damage and cardiomyopathy in mouse models of type 1 (streptozotocin-induced) and type 2 (db/db) diabetes. Cardiac dysfunction was determined by echocardiography. We obtained eGlx depth and coverage by transmission electron microscopy (TEM) on mouse hearts perfusion-fixed with glutaraldehyde and Alcian Blue. Perivascular oedema was assessed from TEM images by measuring the perivascular space area. Lectin-based fluorescence was developed to study eGlx in paraformaldehyde-fixed mouse and human tissues. The eGlx of human conditionally immortalised coronary microvascular endothelial cells (CMVECs) in culture was removed with eGlx-degrading enzymes before measurement of protein passage across the cell monolayer. The mechanism of eGlx damage in the diabetic heart was investigated by quantitative reverse transcription-PCR array and matrix metalloproteinase (MMP) activity assay. To directly demonstrate that eGlx damage disturbs cardiac function, isolated rat hearts were treated with enzymes in a Langendorff preparation. Angiopoietin 1 (Ang1) is known to restore eGlx and so was used to investigate whether eGlx restoration reverses diastolic dysfunction in mice with type 1 diabetes.
    RESULTS: In a mouse model of type 1 diabetes, diastolic dysfunction (confirmed by echocardiography) was associated with loss of eGlx from CMVECs and the development of perivascular oedema, suggesting increased microvascular permeability. We confirmed in vitro that eGlx removal increases CMVEC monolayer permeability. We identified increased MMP activity as a potential mechanism of eGlx damage and we observed loss of syndecan 4 consistent with MMP activity. In a mouse model of type 2 diabetes we found a similar loss of eGlx preceding the development of diastolic dysfunction. We used isolated rat hearts to demonstrate that eGlx damage (induced by enzymes) is sufficient to disturb cardiac function. Ang1 restored eGlx and this was associated with reduced perivascular oedema and amelioration of the diastolic dysfunction seen in mice with type 1 diabetes.
    CONCLUSIONS/INTERPRETATION: The association of CMVEC glycocalyx damage with diastolic dysfunction in two diabetes models suggests that it may play a pathophysiological role and the enzyme studies confirm that eGlx damage is sufficient to impair cardiac function. Ang1 rapidly restores the CMVEC glycocalyx and improves diastolic function. Our work identifies CMVEC glycocalyx damage as a potential contributor to the development of DCM and therefore as a therapeutic target.
    Keywords:  Angiopoietin 1; Coronary microcirculation; Diabetes; Glycocalyx; Permeability
    DOI:  https://doi.org/10.1007/s00125-022-05650-4
  13. Biomedicines. 2022 Jan 20. pii: 221. [Epub ahead of print]10(2):
      Sympathetic nervous system overdrive with chronic release of catecholamines is the most important neurohormonal mechanism activated to maintain cardiac output in response to heart stress. Beta-adrenergic signaling behaves first as a compensatory pathway improving cardiac contractility and maladaptive remodeling but becomes dysfunctional leading to pathological hypertrophy and heart failure (HF). Cardiac remodeling is a complex inflammatory syndrome where macrophages play a determinant role. This study aimed at characterizing the temporal transcriptomic evolution of cardiac macrophages in mice subjected to beta-adrenergic-stimulation using RNA sequencing. Owing to a comprehensive bibliographic analysis and complementary lipidomic experiments, this study deciphers typical gene profiles in early compensated hypertrophy (ECH) versus late dilated remodeling related to HF. We uncover cardiac hypertrophy- and proliferation-related transcription programs typical of ECH or HF macrophages and identify lipid metabolism-associated and Na+ or K+ channel-related genes as markers of ECH and HF macrophages, respectively. In addition, our results substantiate the key time-dependent role of inflammatory, metabolic, and functional gene regulation in macrophages during beta-adrenergic dependent remodeling. This study provides important and novel knowledge to better understand the prevalent key role of resident macrophages in response to chronically activated beta-adrenergic signaling, an effective diagnostic and therapeutic target in failing hearts.
    Keywords:  RNA sequencing and lipidomic analysis; cardiac hypertrophy and heart failure; sympathetic nervous system and chronic beta-adrenergic signaling; temporal cardiac-resident macrophage plasticity
    DOI:  https://doi.org/10.3390/biomedicines10020221