bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2023‒12‒31
seven papers selected by
Sreeparna Banerjee, Middle East Technical University



  1. Sci Rep. 2023 Dec 27. 13(1): 23032
      Cancer cells that migrate from tumors into surrounding tissues are responsible for cancer dissemination through the body. Microfluidic devices have been instrumental in discovering unexpected features of cancer cell migration, including the migration in self-generated gradients and the contributions of cell-cell contact during collective migration. Here, we design microfluidic channels with five successive bifurcations to characterize the directionality of cancer cell migration with high precision. We uncover an unexpected role for glutamine in epithelial cancer cell orientation, which could be replaced by alfa-keto glutarate but not glucose.
    DOI:  https://doi.org/10.1038/s41598-023-49866-9
  2. Front Endocrinol (Lausanne). 2023 ;14 1228136
      Background: Metabolic reprogramming is involved in different stages of tumorigenesis. There are six widely recognized tumor-associated metabolic pathways, including cholesterol catabolism process, fatty acid metabolism, glutamine metabolic process, glycolysis, one carbon metabolic process, and pentose phosphate process. This study aimed to classify gastric cancer patients into different metabolic bio-similar clusters.Method: We analyzed six tumor-associated metabolic pathways and calculated the metabolic pathway score through RNA-seq data using single sample gene set enrichment analysis. The consensus clustering analysis was performed to classify patients into different bio-similar clusters by multi-dimensional scaling. Kaplan-Meier curves were presented between different metabolic bio-similar groups for OS analysis.
    Results: A training set of 370 patients from the Cancer Genome Atlas database with primary gastric cancer was chosen. Patients were classified into four metabolic bio-similar clusters, which were identified as metabolic non-specificity, metabolic-active, cholesterol-silence, and metabolic-silence clusters. Survival analysis showed that patients in metabolic-active cluster and metabolic-silence cluster have significantly poor prognosis than other patients (p=0.031). Patients in metabolic-active cluster and metabolic-silence cluster had significantly higher intra-tumor heterogeneity than other patients (p=0.032). Further analysis was performed in metabolic-active cluster and cholesterol-silence cluster. Three cell-cycle-related pathways, including G2M checkpoints, E2F targets, and MYC targets, were significantly upregulated in metabolic-active cluster than in cholesterol-silence cluster. A validation set of 192 gastric cancer patients from the Gene Expression Omnibus data portal verified that metabolic bio-similar cluster can predict prognosis in gastric cancer.
    Conclusion: Our study established a multi-dimension metabolic prognostic model in gastric cancer, which may be feasible for predicting clinical outcome.
    Keywords:  bio-similar cluster; cell-cycle-related pathway; gastric cancer; metabolic reprogramming; prognostic model
    DOI:  https://doi.org/10.3389/fendo.2023.1228136
  3. Med Res Rev. 2023 Dec 26.
      Cancer heterogeneity remains a significant challenge for effective cancer treatments. Altered energetics is one of the hallmarks of cancer and influences tumor growth and drug resistance. Studies have shown that heterogeneity exists within the metabolic profile of tumors, and personalized-combination therapy with relevant metabolic interventions could improve patient response. Metabolomic studies are identifying novel biomarkers and therapeutic targets that have improved treatment response. The spatial location of elements in the tumor microenvironment are becoming increasingly important for understanding disease progression. The evolution of spatial metabolomics analysis now allows scientists to deeply understand how metabolite distribution contributes to cancer biology. Recently, these techniques have spatially resolved metabolite distribution to a subcellular level. It has been proposed that metabolite mapping could improve patient outcomes by improving precision medicine, enabling earlier diagnosis and intraoperatively identifying tumor margins. This review will discuss how altered metabolic pathways contribute to cancer progression and drug resistance and will explore the current capabilities of spatial metabolomics technologies and how these could be integrated into clinical practice to improve patient outcomes.
    Keywords:  cancer metabolism; glucose; immunotherapy; metabolic interventions; spatial biology
    DOI:  https://doi.org/10.1002/med.22010
  4. Brief Bioinform. 2023 Nov 22. pii: bbad471. [Epub ahead of print]25(1):
      Metabolic plasticity enables cancer cells to meet divergent demands for tumorigenesis, metastasis and drug resistance. Landscape analysis of tumor metabolic plasticity spanning different cancer types, in particular, metabolic crosstalk within cell subpopulations, remains scarce. Therefore, we proposed a new in-silico framework, termed as MMP3C (Modeling Metabolic Plasticity by Pathway Pairwise Comparison), to depict tumor metabolic plasticity based on transcriptome data. Next, we performed an extensive metabo-plastic analysis of over 6000 tumors comprising 13 cancer types. The metabolic plasticity within distinct cell subpopulations, particularly interplay with tumor microenvironment, were explored at single-cell resolution. Ultimately, the metabo-plastic events were screened out for multiple clinical applications via machine learning methods. The pilot research indicated that 6 out of 13 cancer types exhibited signs of the Warburg effect, implying its high reliability and robustness. Across 13 cancer types, high metabolic organized heterogeneity was found, and four metabo-plastic subtypes were determined, which link to distinct immune and metabolism patterns impacting prognosis. Moreover, MMP3C analysis of approximately 60 000 single cells of eight breast cancer patients unveiled several metabo-plastic events correlated to tumorigenesis, metastasis and immunosuppression. Notably, the metabolic features screened out by MMP3C are potential biomarkers for diagnosis, tumor classification and prognosis. MMP3C is a practical cross-platform tool to capture tumor metabolic plasticity, and our study unveiled a core set of metabo-plastic pairs among diverse cancer types, which provides bases toward improving response and overcoming resistance in cancer therapy.
    Keywords:  metabolism plasticity; pan-cancer; tumor microenvironment
    DOI:  https://doi.org/10.1093/bib/bbad471
  5. Curr Drug Metab. 2023 Dec 28.
      Cancer is the second leading cause of mortality worldwide. The heightened nutrient uptake, particularly glucose, and elevated glycolysis observed in rapidly proliferating tumor cells highlight the potential targeting of energy metabolism pathways for the treatment of cancer. Numerous studies and clinical trials have demonstrated the efficacy of nutritional therapy in mitigating the adverse effects of chemotherapy and radiotherapy, enhancing treatment outcomes, prolonging survival, and improving the overall quality of life of patients. This review article comprehensively examines nutritional therapy strategies that specifically address tumor energy metabolism. Moreover, it explores the intricate interplay between energy metabolism and the gut microbiota in the context of nutritional therapy. The findings aim to provide valuable insights for future clinical research endeavors in this field.
    Keywords:  Tumor; cancer treatment; energy metabolism; glucose.; mitochondria; nutritional therapy
    DOI:  https://doi.org/10.2174/0113892002280203231213110634
  6. Biochim Biophys Acta Rev Cancer. 2023 Dec 24. pii: S0304-419X(23)00212-3. [Epub ahead of print] 189063
      The composition and pattern of dietary intake have emerged as key factors influencing aging, regeneration, and consequently, healthspan and lifespan. Cancer is one of the major diseases more tightly linked with aging, and age-related mortality. Although the role of nutrition in cancer incidence is generally well established, we are far from a consensus on how diet influences tumour development in different tissues. In this review, we will discuss how diet and dietary restrictions affect cancer risk and the molecular mechanisms potentially responsible for their effects. We will cover calorie restriction, intermittent fasting, prolonged fasting, fasting-mimicking diet, time-restricted eating, ketogenic diet, high protein diet, Mediterranean diet, and the vegan and vegetarian diets.
    Keywords:  Calorie restriction; Cancer prevention; Dietary restrictions; Fasting mimicking diet; Intermittent fasting; Mediterranean diet
    DOI:  https://doi.org/10.1016/j.bbcan.2023.189063
  7. Mol Pharm. 2023 Dec 26.
      Starvation therapy is an innovative approach in cancer treatment aimed at depriving cancer cells of necessary resources by impeding tumor angiogenesis or blocking the energy supply. In addition to the commonly observed anaerobic glycolysis energy supply mode, adipocyte-rich tumor tissue triggers the fatty acid energy supply pathway, which fuels the proliferation and metastasis of cancer cells. To completely disrupt these dual-energy-supply pathways, we developed an exceptional nanoreactor. This nanoreactor consisted of yolk-shell mesoporous organosilica nanoparticles (YSMONs) loaded with a fatty acid transport inhibitor (Dox), conjugated with a luminal breast-cancer-specific targeting aptamer, and integrated with a glucose oxidation catalyst (GOx). Upon reaching cancer cells with the assistance of the aptamer, the nanoreactor underwent a structural collapse of the shell triggered by the high concentration of glutathione within cancer cells. This collapse led to the release of GOx and Dox, achieving targeted delivery and exhibiting significant efficacy in starving therapy. Additionally, the byproducts of glucose metabolism, gluconic acid and H2O2, enhanced the acidity and reactive oxygen species levels of the intracellular microenvironment, inducing oxidative damage to cancer cells. Simultaneously, released Dox acted as a potent broad-spectrum anticancer drug, inhibiting the activity of carnitine palmitoyltransferase 1A and exerting marked effects. Combining these effects ensures high anticancer efficiency, and the "dual-starvation" nanoreactor has the potential to establish a novel synergistic therapy paradigm with considerable clinical significance. Furthermore, this approach minimizes damage to normal organs, making it highly valuable in the field of cancer treatment.
    Keywords:  luminal breast cancer; starving therapy for cancer treatment; the fatty acids energy supply pathway; yolk−shell mesoporous organosilica nanoparticles; “dual-starvation” nanoreactor
    DOI:  https://doi.org/10.1021/acs.molpharmaceut.3c00894