3 Biotech. 2023 Oct;13(10): 339
Cancerous cells display metabolic engineering through enhanced utilization of nutrients to support their increased requirements for proliferation, bioenergetics, biosynthesis, redox homeostasis, and cell signaling. To investigate the extent to which malignant cells rely on glycolysis and glutaminolysis, the effects of differential deprivation of nutrients such as d-glucose, l-glutamine, and pyruvate on proliferation, morphology, cell cycle, oxidative stress, mitochondrial function, autophagic vacuole formation, and migration in MDA-MB-231, HepG2, and HeLa cells were investigated in this study. Cell viability assay, cell morphology, and ATP assay showed higher dependence of MDA-MB-231 and HepG2 cells on glucose and glutamine, respectively, for cell survival, growth, ATP production, and proliferation, while HeLa cells were equally dependent on both. However, the combination of all three nutrients displayed maximum proliferation. Differential deprivation of glucose in the absence of glutamine resulted in G0/G1 plus G2/M arrest in MDA-MB-231, whereas G0/G1 arrest in HepG2 and S-phase arrest in HeLa cells occurred at 48 h. Although the differential withdrawal of nutrients revealed a varying degree of effect dependent on cell type, nutrient type, nutrient concentrations, and deprivation time, a general trend of increased oxidative stress, loss of mitochondrial membrane potential, and ATP and antioxidant (GSH) depletion led to mitochondrial dysfunction in all three cell lines and inhibition of cell migration in MDA-MB-231 and HeLa cells at 48 h. Extreme deprivation of nutrients formed autophagic vacuoles. Importantly, normal cells (HEK293) remained unaffected under most of the nutrient-deprived conditions examined. This study enhances our understanding of the impact of differential nutrient deprivation on critical characteristics of cancer cells, contributing to the development of metabolism-based effective anticancer strategies.
Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-023-03759-w.
Keywords: Cancer; Cell cycle arrest; Cell death; Glucose and glutamine; Metabolic stress; Mitochondrial function