bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2023‒05‒14
eleven papers selected by
Sreeparna Banerjee
Middle East Technical University

  1. Redox Biol. 2023 May 04. pii: S2213-2317(23)00133-7. [Epub ahead of print]63 102732
      Glutamine is critical for tumor progression, and restriction of its availability is emerging as a potential therapeutic strategy. The metabolic plasticity of tumor cells helps them adapting to glutamine restriction. However, the role of cholesterol metabolism in this process is relatively unexplored. Here, we reported that glutamine deprivation inhibited cholesterol synthesis in hepatocellular carcinoma (HCC). Reactivation of cholesterol synthesis enhanced glutamine-deprivation-induced cell death of HCC cells, which is partially duo to augmented NADPH depletion and lipid peroxidation. Mechanistically, glutamine deprivation induced lipophagy to transport cholesterol from lipid droplets (LDs) to endoplasmic reticulum (ER), leading to inhibit SREBF2 maturation and cholesterol synthesis, and maintain redox balance for survival. Glutamine deprivation decreased mTORC1 activity to induce lipophagy. Importantly, administration of U18666A, CQ, or shTSC2 viruses further augmented GPNA-induced inhibition of xenograft tumor growth. Clinical data supported that glutamine utilization positively correlated with cholesterol synthesis, which is associated with poor prognosis of HCC patients. Collectively, our study revealed that cholesterol synthesis inhibition is required for the survival of HCC under glutamine-restricted tumor microenvironment.
    Keywords:  Cholesterol metabolism; Glutamine metabolism; Redox balance; SREBF2; mTORC1
  2. Cell Death Dis. 2023 May 09. 14(5): 314
      Melanomas are characterised by accelerated cell proliferation and metabolic reprogramming resulting from the contemporary dysregulation of the MAPK pathway, glycolysis and the tricarboxylic acid (TCA) cycle. Here, we suggest that the oncogenic transcription factor EB (TFEB), a key regulator of lysosomal biogenesis and function, controls melanoma tumour growth through a transcriptional programme targeting ERK1/2 activity and glucose, glutamine and cholesterol metabolism. Mechanistically, TFEB binds and negatively regulates the promoter of DUSP-1, which dephosphorylates ERK1/2. In melanoma cells, TFEB silencing correlates with ERK1/2 dephosphorylation at the activation-related p-Thr185 and p-Tyr187 residues. The decreased ERK1/2 activity synergises with TFEB control of CDK4 expression, resulting in cell proliferation blockade. Simultaneously, TFEB rewires metabolism, influencing glycolysis, glucose and glutamine uptake, and cholesterol synthesis. In TFEB-silenced melanoma cells, cholesterol synthesis is impaired, and the uptake of glucose and glutamine is inhibited, leading to a reduction in glycolysis, glutaminolysis and oxidative phosphorylation. Moreover, the reduction in TFEB level induces reverses TCA cycle, leading to fatty acid production. A syngeneic BRAFV600E melanoma model recapitulated the in vitro study results, showing that TFEB silencing sustains the reduction in tumour growth, increase in DUSP-1 level and inhibition of ERK1/2 action, suggesting a pivotal role for TFEB in maintaining proliferative melanoma cell behaviour and the operational metabolic pathways necessary for meeting the high energy demands of melanoma cells.
  3. bioRxiv. 2023 Apr 28. pii: 2023.04.24.538118. [Epub ahead of print]
      Interplay between metabolism and chromatin signaling have been implicated in cancer initiation and progression. However, whether and how metabolic reprogramming in tumors generates specific epigenetic vulnerabilities remain unclear. Lung adenocarcinoma (LUAD) tumors frequently harbor mutations that cause aberrant activation of the NRF2 antioxidant pathway and drive aggressive and chemo-resistant disease. We performed a chromatin-focused CRISPR screen and report that NRF2 activation sensitized LUAD cells to genetic and chemical inhibition of class I histone deacetylases (HDAC). This association was consistently observed across cultured cells, syngeneic mouse models and patient-derived xenografts. HDAC inhibition causes widespread increases in histone H4 acetylation (H4ac) at intergenic regions, but also drives re-targeting of H4ac reader protein BRD4 away from promoters with high H4ac levels and transcriptional downregulation of corresponding genes. Integrative epigenomic, transcriptomic and metabolomic analysis demonstrates that these chromatin changes are associated with reduced flux into amino acid metabolism and de novo nucleotide synthesis pathways that are preferentially required for the survival of NRF2-active cancer cells. Together, our findings suggest that metabolic alterations such as NRF2 activation could serve as biomarkers for effective repurposing of HDAC inhibitors to treat solid tumors.
  4. JCI Insight. 2023 May 11. pii: e160345. [Epub ahead of print]
      T cells play an important role in acute kidney injury (AKI). Metabolic programming of T cells regulates their function, is a rapidly emerging field, and is unknown in AKI. We induced ischemic AKI in C57B6 mice and collected kidneys and spleens at multiple time points. T cells were isolated and analyzed by an immune-metabolic assay. Unbiased machine learning analyses identified a distinct T cell subset with reduced VDAC1 and mTOR expression in post-AKI kidneys. Ischemic kidneys showed higher expression of trimethylation of histone H3 lysine 27 (H3K27Me3) and glutaminase. Splenic T cells from post-AKI mice had higher expression of GLUT1, hexokinase II, and CPT1a. Human nonischemic and ischemic kidney tissue displayed similar findings to mouse kidneys. Given a convergent role for glutamine in T cell metabolic pathways and the availability of a relatively safe glutamine antagonist JHU083, effects on AKI were evaluated. JHU083 attenuated renal injury and reduced T cell activation and proliferation in ischemic and nephrotoxic AKI, whereas T cell-deficient mice were not protected by glutamine blockade. In vitro hypoxia demonstrated upregulation of glycolysis-related enzymes. T cells undergo metabolic reprogramming during AKI, and reconstitution of metabolism by targeting T cell glutamine pathway could be a promising novel therapeutic approach.
    Keywords:  Immunology; Nephrology; T cells
  5. Brain Tumor Res Treat. 2023 Apr;11(2): 86-93
      Diffuse midline glioma (DMG), hitherto known as diffuse intrinsic pontine glioma (DIPG), is a rare and aggressive form of brain cancer that primarily affects children. Although the exact cause of DMG/DIPG is not known, a large proportion of DMG/DIPG tumors harbor mutations in the gene encoding the histone H3 protein, specifically the H3K27M mutation. This mutation decreases the level of H3K27me3, a histone modification that plays a vital role in regulating gene expression through epigenetic regulation. The mutation also alters the function of polycomb repressive complex 2 (PRC2), thereby preventing the repression of genes associated with cancer development. The decrease in H3K27me3 caused by the histone H3 mutation is accompanied by an increase in the level of H3K27ac, a post-translational modification related to active transcription. Dysregulation of histone modification markedly affects gene expression, contributing to cancer development and progression by promoting uncontrolled cell proliferation, tumor growth, and metabolism. DMG/DIPG alters the metabolism of methionine and the tricarboxylic acid cycle, as well as glucose and glutamine uptake. The role of epigenetic and metabolic changes in the development of DMG/DIPG has been studied extensively, and understanding these changes is critical to developing therapies targeting these pathways. Studies are currently underway to identify new therapeutic targets for DMG/DIPG, which may lead to the development of effective treatments for this devastating disease.
    Keywords:  Diffuse intrinsic pontine glioma; Diffuse midline glioma; Epigenomics; Histone code; Metabolomics; Therapeutics
  6. Med Oncol. 2023 May 11. 40(6): 174
      Oncogenic metabolic reprogramming impacts the abundance of key metabolites that regulate signaling and epigenetics. Metabolic vulnerability in the cancer cell is evident from the Warburg effect. The research on metabolism in the progression and survival of breast cancer (BC) is under focus. Oncogenic signal activation and loss of tumor suppressor are important regulators of tumor cell metabolism. Several intrinsic and extrinsic factors contribute to metabolic reprogramming. The molecular mechanisms underpinning metabolic reprogramming in BC are extensive and only partially defined. Various signaling pathways involved in the metabolism play a significant role in the modulation of BC. Notably, PI3K/AKT/mTOR pathway, lactate-ERK/STAT3 signaling, loss of the tumor suppressor Ras, Myc, oxidative stress, activation of the cellular hypoxic response and acidosis contribute to different metabolic reprogramming phenotypes linked to enhanced glycolysis. The alterations in mitochondrial genes have also been elaborated upon along with their functional implications. The outcome of these active research areas might contribute to the development of novel therapeutic interventions and the remodeling of known drugs.
    Keywords:  BC; Metabolic reprogramming; Mitochondria; Signaling
  7. Cell Mol Biol Lett. 2023 May 09. 28(1): 37
      Metabolic reprogramming is a well-known feature of cancer that allows malignant cells to alter metabolic reactions and nutrient uptake, thereby promoting tumor growth and spread. It has been discovered that noncoding RNAs (ncRNAs), including microRNA (miRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA), have a role in a variety of biological functions, control physiologic and developmental processes, and even influence disease. They have been recognized in numerous cancer types as tumor suppressors and oncogenic agents. The role of ncRNAs in the metabolic reprogramming of cancer cells has recently been noticed. We examine this subject, with an emphasis on the metabolism of glucose, lipids, and amino acids, and highlight the therapeutic use of targeting ncRNAs in cancer treatment.
    Keywords:  Cancer; Circular RNA; Long noncoding RNA; Metabolic reprogramming; MicroRNA; Noncoding RNAs
  8. Curr Biol. 2023 Apr 30. pii: S0960-9822(23)00528-6. [Epub ahead of print]
      Most eukaryotes respire oxygen, using it to generate biomass and energy. However, a few organisms have lost the capacity to respire. Understanding how they manage biomass and energy production may illuminate the critical points at which respiration feeds into central carbon metabolism and explain possible routes to its optimization. Here, we use two related fission yeasts, Schizosaccharomyces pombe and Schizosaccharomyces japonicus, as a comparative model system. We show that although S. japonicus does not respire oxygen, unlike S. pombe, it is capable of efficient NADH oxidation, amino acid synthesis, and ATP generation. We probe possible optimization strategies through the use of stable isotope tracing metabolomics, mass isotopologue distribution analysis, genetics, and physiological experiments. S. japonicus appears to have optimized cytosolic NADH oxidation via glycerol-3-phosphate synthesis. It runs a fully bifurcated TCA pathway, sustaining amino acid production. Finally, we propose that it has optimized glycolysis to maintain high ATP/ADP ratio, in part by using the pentose phosphate pathway as a glycolytic shunt, reducing allosteric inhibition of glycolysis and supporting biomass generation. By comparing two related organisms with vastly different metabolic strategies, our work highlights the versatility and plasticity of central carbon metabolism in eukaryotes, illuminating critical adaptations supporting the preferential use of glycolysis over oxidative phosphorylation.
    Keywords:  Schizosaccharomyces japonicus; Schizosaccharomyces pombe; TCA Cycle; bifurcated TCA pathway; fermentation; glycolysis; metabolomics; respiration
  9. Signal Transduct Target Ther. 2023 May 10. 8(1): 196
      A wide spectrum of metabolites (mainly, the three major nutrients and their derivatives) can be sensed by specific sensors, then trigger a series of signal transduction pathways and affect the expression levels of genes in epigenetics, which is called metabolite sensing. Life body regulates metabolism, immunity, and inflammation by metabolite sensing, coordinating the pathophysiology of the host to achieve balance with the external environment. Metabolic reprogramming in cancers cause different phenotypic characteristics of cancer cell from normal cell, including cell proliferation, migration, invasion, angiogenesis, etc. Metabolic disorders in cancer cells further create a microenvironment including many kinds of oncometabolites that are conducive to the growth of cancer, thus forming a vicious circle. At the same time, exogenous metabolites can also affect the biological behavior of tumors. Here, we discuss the metabolite sensing mechanisms of the three major nutrients and their derivatives, as well as their abnormalities in the development of various cancers, and discuss the potential therapeutic targets based on metabolite-sensing signaling pathways to prevent the progression of cancer.
  10. EMBO Mol Med. 2023 May 09. e16910
      MYC is a key oncogenic driver in multiple tumor types, but concomitantly endows cancer cells with a series of vulnerabilities that provide opportunities for targeted pharmacological intervention. For example, drugs that suppress mitochondrial respiration selectively kill MYC-overexpressing cells. Here, we unravel the mechanistic basis for this synthetic lethal interaction and exploit it to improve the anticancer effects of the respiratory complex I inhibitor IACS-010759. In a B-lymphoid cell line, ectopic MYC activity and treatment with IACS-010759 added up to induce oxidative stress, with consequent depletion of reduced glutathione and lethal disruption of redox homeostasis. This effect could be enhanced either with inhibitors of NADPH production through the pentose phosphate pathway, or with ascorbate (vitamin C), known to act as a pro-oxidant at high doses. In these conditions, ascorbate synergized with IACS-010759 to kill MYC-overexpressing cells in vitro and reinforced its therapeutic action against human B-cell lymphoma xenografts. Hence, complex I inhibition and high-dose ascorbate might improve the outcome of patients affected by high-grade lymphomas and potentially other MYC-driven cancers.
    Keywords:  MYC; ROS; lymphoma; mitochondria; targeted therapy
  11. Cell Commun Signal. 2023 May 08. 21(1): 106
      Mutations in the KRAS gene and overexpression of protein products of the MYC and ARF6 genes occur frequently in cancer. Here, the inseparable relationships and cooperation of the protein products of these three genes in cancer malignancy and immune evasion are discussed. mRNAs encoded by these genes share the common feature of a G-quadruplex structure, which directs them to be robustly expressed when cellular energy production is increased. These three proteins are also functionally inseparable from each other, as follows. 1) KRAS induces MYC gene expression, and may also promote eIF4A-dependent MYC and ARF6 mRNA translation, 2) MYC induces the expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation, and 3) ARF6 protects mitochondria from oxidative injury. ARF6 may moreover promote cancer invasion and metastasis, and also acidosis and immune checkpoint. Therefore, the inseparable relationships and cooperation of KRAS, MYC, and ARF6 appear to result in the activation of mitochondria and the driving of ARF6-based malignancy and immune evasion. Such adverse associations are frequent in pancreatic cancer, and appear to be further enhanced by TP53 mutations. Video Abstract.
    Keywords:  AMAP1; ARF6; Cancer immune evasion; Cancer malignancy; G-quadruplex structure; KRAS; MYC; Mitochondria; TP53; eIF4A; mTOR