Biomed Chromatogr. 2022 Jul 18. e5451
Yanli Wang,
Xiaoqing Zhu,
Kailiang Wang,
Ying Cai,
Chunhua Liu,
Jie Pan,
Jia Sun,
Ting Liu,
Yong Huang,
Yongjun Li,
Yuan Lu.
Hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide and the second most common cause of cancer deaths. This study aimed to explore the inhibitory effect and mechanism of Aidi injection (ADI) combined with doxorubicin (DOX) in HCC treatment. The drug concentrations in combined threapy was determined by investigating the effect of various concentrations of ADI and DOX on the viability of H22 cells. The combination index (CI) was also calculated. A metabolomic strategy based on ultrahigh performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) platform was established to analyze the metabolites. As a result, the CI values were less than 1, indicating that the combination of ADI and DOX exerted a synergistic effect on HCC treatment. The combination of 40‰ ADI and 1 μmol/L DOX had the strongest inhibitory effect and was used for subsequent metabolomic analysis. A total of 19 metabolic markers were obtained in metabolomic analysis, including amino acids (L-glutamic acid, L-arginine, and L-tyrosine), organic acids (succinic acid and citric acid), adenosine, and hypoxanthine , etc. Compared with the treatment using DOX or ADI alone, the combined therapy further regulated the levels of metabolic markers in HCC, which may be the reason for the synergistic effect. Seven metabolic pathways were significantly enriched, including phenylalanine, tyrosine and tryptophan biosynthesis, D-glutamine and D-glutamate metabolism, alanine, aspartate and glutamate metabolism, phenylalanine metabolism, arginine biosynthesis, tricarboxylic acid (TCA) cycle, and purine metabolism. These findings demonstrated that ADI combined with DOX can effectively inhibit the viability of H22 cells, which may exert a synergistic anti-tumor effect by balancing the metabolism of amino acids and energy-related substances.
Keywords: Aidi injection; Cell metabolomics; Doxorubicin; H22 hepatocellular carcinoma; Synergistic effect