bims-glucam Biomed News
on Glutamine cancer metabolism
Issue of 2021‒09‒12
eighteen papers selected by
Sreeparna Banerjee
Middle East Technical University


  1. Autophagy. 2021 Sep 05. 1-3
      Radiotherapy is one of the curative mainstays of prostate cancer; however, its efficacy is often diminished by tumor radioresistance. Depending on the stage of disease, tumors can relapse in approximately 50% of patients with prostate cancer after radiotherapy. Nevertheless, the mechanisms that drive tumor cell survival are not fully characterized, and reliable molecular prognostic markers of prostate cancer radioresistance are missing. Similar to other tumor entities, prostate cancer cells are heterogeneous in their capability to maintain tumor growth. The populations of cancer stem cells (CSCs) with self-renewal and differentiation properties are responsible for tumor development and recurrence after treatment. Eradication of these CSC populations is of utmost importance for efficient tumor cure. In a recently published study, we showed that prostate cancer cells could be radiosensitized by glutamine deprivation, resulting in DNA damage, oxidative stress, epigenetic modifications, and depletion of CSCs. Conversely, prostate cancer cells with resistance to glutamine depletion show an activation of ATG-mediated macroautophagy/autophagy as a survival strategy to withstand radiation-induced damage. Thus, a combination of targeting glutamine metabolism and autophagy blockade lead to more efficient prostate cancer radiosensitization.Abbreviations: ATG5: autophagy related 5; CSCs: cancer stem cells; GLS: glutaminase; TCA cycle: tricarboxylic acid cycle.
    Keywords:  ATG5; GLS1; MYC; autophagy; cancer stem cells; glutamine; prostate cancer; radioresistance
    DOI:  https://doi.org/10.1080/15548627.2021.1962682
  2. Cancers (Basel). 2021 Sep 06. pii: 4484. [Epub ahead of print]13(17):
      Metabolic reprogramming and deregulated cellular energetics are hallmarks of cancer. The aberrant metabolism of cancer cells is thought to be the product of differential oncogene activation and tumor suppressor gene inactivation. MYC is one of the most important oncogenic drivers, its activation being reported in a variety of cancer types and sub-types, among which are the most prevalent and aggressive of all malignancies. This review aims to offer a comprehensive overview and highlight the importance of the c-Myc transcription factor on the regulation of metabolic pathways, in particular that of glutamine and glutaminolysis. Glutamine can be extensively metabolized into a variety of substrates and be integrated in a complex metabolic network inside the cell, from energy metabolism to nucleotide and non-essential amino acid synthesis. Together, understanding metabolic reprogramming and its underlying genetic makeup, such as MYC activation, allows for a better understanding of the cancer cell phenotype and thus of the potential vulnerabilities of cancers from a metabolic standpoint.
    Keywords:  MYC; glutamine metabolism; oncogene
    DOI:  https://doi.org/10.3390/cancers13174484
  3. Aging (Albany NY). 2021 Sep 07. 13(undefined):
      Therapy-induced senescence (TIS) is a major cellular response to anticancer therapies. While induction of a persistent growth arrest would be a desirable outcome in cancer therapy, it has been shown that, unlike normal cells, cancer cells are able to evade the senescence cell cycle arrest and to resume proliferation, likely contributing to tumor relapse. Notably, cells that escape from TIS acquire a plastic, stem cell-like phenotype. The metabolic dependencies of cells that evade senescence have not been thoroughly studied. In this study, we show that glutamine depletion inhibits escape from TIS in all cell lines studied, and reduces the stem cell subpopulation. In line with a metabolic reliance on glutamine, escaped clones overexpress the glutamine transporter SLC1A5. We also demonstrate a central role of glutamine synthetase that mediates resistance to glutamine deprivation, conferring independence from exogenous glutamine. Finally, rescue experiments demonstrate that glutamine provides nitrogen for nucleotides biosynthesis in cells that escape from TIS, but also suggest a critical involvement of glutamine in other metabolic and non-metabolic pathways. On the whole, these results reveal a metabolic vulnerability of cancer stem cells that recover proliferation after exposure to anticancer therapies, which could be exploited to prevent tumor recurrence.
    Keywords:  cancer stem cells; escape; glutamine; glutamine synthetase; therapy-induced senescence
    DOI:  https://doi.org/10.18632/aging.203495
  4. Front Oncol. 2021 ;11 698835
      Background: Neuronal activity regulated by synaptic communication exerts an important role in tumorigenesis and progression in brain tumors. Genes for soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) annotated with the function 'vesicle' about synaptic connectivity were identified, and synaptosomal-associated protein 25 (SNAP25), one of those proteins, was found to have discrepant expression levels in neuropathies. However, the specific mechanism and prognostic value of SNAP25 during glioma progression remain unclear.Methods: Using RNA sequencing data from The Cancer Genome Atlas (TCGA) database, the differential synaptosis-related genes between low grade glioma (LGG) and glioblastoma (GBM) were identified as highly correlated. Cox proportional hazards regression analysis and survival analysis were used to differentiate the outcome of low- and high-risk patients, and the Chinese Glioma Genome Atlas (CGGA) cohort was used for validation of the data set. RT-qPCR, western blot, and immunohistochemistry assays were performed to examine the expression level of SNAP25 in glioma cells and samples. Functional assays were performed to identify the effects of SNAP25 knockdown and overexpression on cell viability, migration, and invasion. Liquid chromatography-high resolution mass spectrometry (LC-MS)-based metabolomics approach was presented for identifying crucial metabolic disturbances in glioma cells. In situ mouse xenograft model was used to investigate the role of SNAP25 in vivo. Then, an immunofluorescence assay of the xenograft tissue was applied to evaluate the expression of the neuronal dendron formation marker-Microtubule Associated Protein 2 (MAP2).
    Results: SNAP25 was decreased in level of expression in glioma tissues and cell lines, and low-level SNAP25 indicated an unfavorable prognosis of glioma patients. SNAP25 inhibited cell proliferation, migration, invasion and fostered glutamine metabolism of glioma cells, exerting a tumor suppressor role. Overexpressed SNAP25 exerted a lower expression level of MAP2, indicating poor neuronal plasticity and connectivity. SNAP25 could regulate glutaminase (GLS)-mediated glutaminolysis, and GLS knockdown could rescue the anti-tumor effect of SNAP25 in glioma cells. Moreover, upregulated SNAP25 also decreased tumor volume and prolonged the overall survival (OS) of the xenograft mouse.
    Conclusion: SNAP25, a tumor suppressor inhibited carcinogenesis of glioma via limiting glutamate metabolism by regulating GLS expression, as well as inhibiting dendritic formation, which could be considered as a novel molecular therapeutic target for glioma.
    Keywords:  SNAP25; glioma progression; glutaminase; glutamine metabolism; synaptic plasticity
    DOI:  https://doi.org/10.3389/fonc.2021.698835
  5. Cancers (Basel). 2021 Aug 30. pii: 4375. [Epub ahead of print]13(17):
      The PI3K/Akt/mTOR pathway has been well known to interact with the estrogen receptor (ER)-pathway and to be also frequently upregulated in aromatase inhibitor (AI)-resistant breast cancer patients. Intracellular levels of free amino acids, especially leucine, regulate the mammalian target of rapamycin complex 1 (mTORC1) activation. L-type amino acid transporters such as LAT1 and LAT3 are associated with the uptake of essential amino acids. LAT1 expression could mediate leucine uptake, mTORC1 signaling, and cell proliferation. Therefore, in this study, we explored amino acid metabolism, including LAT1, in breast cancer and clarified the potential roles of LAT1 in the development of therapeutic resistance and the eventual clinical outcome of the patients. We evaluated LAT1 and LAT3 expression before and after neoadjuvant hormone therapy (NAH) and examined LAT1 function and expression in estrogen deprivation-resistant (EDR) breast carcinoma cell lines. Tumors tended to be in advanced stages in the cases whose LAT1 expression was high. LAT1 expression in the EDR cell lines was upregulated. JPH203, a selective LAT1 inhibitor, demonstrated inhibitory effects on cell proliferation in EDR cells. Hormone therapy changed the tumor microenvironment and resulted in metabolic reprogramming through inducing LAT1 expression. LAT1 expression then mediated leucine uptake, enhanced mTORC1 signaling, and eventually resulted in AI resistance. Therefore, LAT1 could be the potential therapeutic target in AI-resistant breast cancer patients.
    Keywords:  JPH203; SLC43A1 (LAT3); SLC7A5 (LAT1); amino acid metabolism; breast cancer; hormone therapy
    DOI:  https://doi.org/10.3390/cancers13174375
  6. Cancer Cell Int. 2021 Sep 09. 21(1): 479
      Cancer-associated fibroblasts (CAFs), the most abundant cells in the tumor microenvironment, play an indispensable role in cancer initiation, progression, metastasis, and metabolism. The limitations of traditional treatments can be partly attributed to the lack of understanding of the role of the tumor stroma. For this reason, CAF targeting is gradually gaining attention, and many studies are trying to overcome the limitations of tumor treatment with CAF as a breakthrough. Glutamine (GLN) has been called a "nitrogen reservoir" for cancer cells because of its role in supporting anabolic processes such as fuel proliferation and nucleotide synthesis, but ammonia is a byproduct of the metabolism of GLN and other nitrogenous compounds. Moreover, in some studies, GLN has been reported as a fundamental nitrogen source that can support tumor biomass. In this review, we discuss the latest findings on the role of GLN and ammonia in the crosstalk between CAFs and cancer cells as well as the potential therapeutic implications of nitrogen metabolism.
    Keywords:  Ammonia; Cancer cells; Cancer-associated fibroblasts; Glutamine; Tumor microenvironment
    DOI:  https://doi.org/10.1186/s12935-021-02121-5
  7. Int J Mol Sci. 2021 Sep 01. pii: 9507. [Epub ahead of print]22(17):
      In spite of the continuous improvement in our knowledge of the nature of cancer, the causes of its formation and the development of new treatment methods, our knowledge is still incomplete. A key issue is the difference in metabolism between normal and cancer cells. The features that distinguish cancer cells from normal cells are the increased proliferation and abnormal differentiation and maturation of these cells, which are due to regulatory changes in the emerging tumour. Normal cells use oxidative phosphorylation (OXPHOS) in the mitochondrion as a major source of energy during division. During OXPHOS, there are 36 ATP molecules produced from one molecule of glucose, in contrast to glycolysis which provides an ATP supply of only two molecules. Although aerobic glucose metabolism is more efficient, metabolism based on intensive glycolysis provides intermediate metabolites necessary for the synthesis of nucleic acids, proteins and lipids, which are in constant high demand due to the intense cell division in cancer. This is the main reason why the cancer cell does not "give up" on glycolysis despite the high demand for energy in the form of ATP. One of the evolving trends in the development of anti-cancer therapies is to exploit differences in the metabolism of normal cells and cancer cells. Currently constructed therapies, based on cell metabolism, focus on the attempt to reprogram the metabolic pathways of the cell in such a manner that it becomes possible to stop unrestrained proliferation.
    Keywords:  Warburg effect; cancer metabolism; glutamine; glycolysis; lactate; tumour heterogeneity
    DOI:  https://doi.org/10.3390/ijms22179507
  8. Trends Mol Med. 2021 Sep 03. pii: S1471-4914(21)00196-9. [Epub ahead of print]
      The frequent occurrence of neomorphic isocitrate dehydrogenase 1 (IDH1) mutations in low-grade glioma led to an IDH-centric classification of these tumors. However, exploiting metabolic alterations of glioma for diagnostic imaging and treatment has marginally improved patients' prognosis. Here we discuss the nutritional microenvironment of glioma, shaped by the distinctive dependence of the brain on glucose and ketone bodies for energy, and on amino acids for neurotransmission. We highlight the progress in metabolic applications for glioma diagnosis and therapy, and present a map that streamlines the rewired glioma metabolism. The map illustrates the altered reactions in central carbon and nitrogen metabolism that drive glioma biology, and represent metabolic vulnerabilities with translational potential.
    Keywords:  IDH1 mutation; cancer metabolism; glioblastoma; glioma
    DOI:  https://doi.org/10.1016/j.molmed.2021.07.011
  9. Curr Drug Metab. 2021 Aug 31.
      BACKGROUND: Metabolomic analyses from our group and others have shown that tumors treated with glutamine antagonists (GA) exhibit robust accumulation of formylglycinamide ribonucleotide (FGAR), an intermediate in the de novo purine synthesis pathway. The increase in FGAR is attributed to the inhibition of the enzyme FGAR amidotransferase (FGAR-AT) that catalyzes the ATP-dependent amidation of FGAR to formylglycinamidine ribonucleotide (FGAM). While perturbation of this pathway resulting from GA therapy has long been recognized, no study has reported systematic quantitation and analyses of FGAR in plasma and tumors.OBJECTIVE: Herein, we aimed to evaluate the efficacy of our recently discovered tumor-targeted GA prodrug, GA-607 (isopropyl 2-(6-acetamido-2-(adamantane-1-carboxamido)hexanamido)-6-diazo-5-oxohexanoate), and demonstrate its target engagement by quantification of FGAR in plasma and tumors.
    METHODS: Efficacy and pharmacokinetics of GA-607 were evaluated in a murine EL4 lymphoma model followed by global tumor metabolomic analysis. Liquid chromatography-mass spectrometry (LC-MS) based methods employing the ion-pair chromatography approach were developed and utilized for quantitative FGAR analyses in plasma and tumors.
    RESULTS: GA-607 showed preferential tumor distribution and robust single-agent efficacy in a murine EL4 lymphoma model. While several metabolic pathways were perturbed by GA-607 treatment, FGAR showed the highest increase qualitatively. Using our newly developed sensitive and selective LC-MS method, we showed a robust >80- and >10-fold increase in tumor and plasma FGAR levels, respectively, with GA-607 treatment.
    CONCLUSION: These studies describe the importance of FGAR quantification following GA therapy in cancer and underscore its importance as a valuable pharmacodynamic marker in the preclinical and clinical development of GA therapies.
    Keywords:  Glutamine antagonist; LC-MS ; biomarker; cancer; formylglycinamide ribonucleotide; formylglycinamidine ribonucleotide; purine synthesis
    DOI:  https://doi.org/10.2174/1389200222666210831125041
  10. Biochim Biophys Acta Mol Basis Dis. 2021 Sep 03. pii: S0925-4439(21)00198-8. [Epub ahead of print] 166265
      Autophagy is an intracellular lysosomal degradation process involved in multiple facets of cancer biology. Various dimensions of autophagy are associated with tumor growth and cancer progression, and here we focus on the dimensions involved in regulation of cell survival/cell death, cell proliferation and tumor dormancy. The first dimension of autophagy supports cell survival under stress within tumors and under certain contexts drives cell death, impacting tumor growth. The second dimension of autophagy promotes proliferation through directly regulating cell cycle or indirectly maintaining metabolism, increasing tumor growth. The third dimension of autophagy facilitates tumor cell dormancy, contributing to cancer treatment resistance and cancer recurrence. The intricate relationship between these three dimensions of autophagy influences the extent of tumor growth and cancer progression. In this review, we summarize the roles of the three dimensions of autophagy in tumor growth and cancer progression, and discuss unanswered questions in these fields.
    Keywords:  Autophagy; Cell death; Cell survival; Proliferation; Tumor dormacy; Tumor growth
    DOI:  https://doi.org/10.1016/j.bbadis.2021.166265
  11. Cancers (Basel). 2021 Aug 30. pii: 4372. [Epub ahead of print]13(17):
      This study was directed to characterize the role of glutamine in the modulation of the response of chronic myeloid leukemia (CML) cells to low oxygen, a main condition of hematopoietic stem cell niches of bone marrow. Cells were incubated in atmosphere at 0.2% oxygen in the absence or the presence of glutamine. The absence of glutamine markedly delayed glucose consumption, which had previously been shown to drive the suppression of BCR/Abl oncoprotein (but not of the fusion oncogene BCR/abl) in low oxygen. Glutamine availability thus emerged as a key regulator of the balance between the pools of BCR/Abl protein-expressing and -negative CML cells endowed with stem/progenitor cell potential and capable to stand extremely low oxygen. These findings were confirmed by the effects of the inhibitors of glucose or glutamine metabolism. The BCR/Abl-negative cell phenotype is the best candidate to sustain the treatment-resistant minimal residual disease (MRD) of CML because these cells are devoid of the molecular target of the BCR/Abl-active tyrosine kinase inhibitors (TKi) used for CML therapy. Therefore, the treatments capable of interfering with glutamine action may result in the reduction in the BCR/Abl-negative cell subset sustaining MRD and in the concomitant rescue of the TKi sensitivity of CML stem cell potential. The data obtained with glutaminase inhibitors seem to confirm this perspective.
    Keywords:  chronic myeloid leukemia; glucose; glutamine; low oxygen; minimal residual disease; stem cell niche
    DOI:  https://doi.org/10.3390/cancers13174372
  12. Front Mol Biosci. 2021 ;8 706650
      HRAS, NRAS and KRAS, collectively referred to as oncogenic RAS, are the most frequently mutated driver proto-oncogenes in cancer. Oncogenic RAS aberrantly rewires metabolic pathways promoting the generation of intracellular reactive oxygen species (ROS). In particular, lipids have gained increasing attention serving critical biological roles as building blocks for cellular membranes, moieties for post-translational protein modifications, signaling molecules and substrates for ß-oxidation. However, thus far, the understanding of lipid metabolism in cancer has been hampered by the lack of sensitive analytical platforms able to identify and quantify such complex molecules and to assess their metabolic flux in vitro and, even more so, in primary tumors. Similarly, the role of ROS in RAS-driven cancer cells has remained elusive. On the one hand, ROS are beneficial to the development and progression of precancerous lesions, by upregulating survival and growth factor signaling, on the other, they promote accumulation of oxidative by-products that decrease the threshold of cancer cells to undergo ferroptosis. Here, we overview the recent advances in the study of the relation between RAS and lipid metabolism, in the context of different cancer types. In particular, we will focus our attention on how lipids and oxidative stress can either promote or sensitize to ferroptosis RAS driven cancers. Finally, we will explore whether this fine balance could be modulated for therapeutic gain.
    Keywords:  RAS oncogenes; ferroptosis; lipid metabolism; oxidative stress; tumorigenesis
    DOI:  https://doi.org/10.3389/fmolb.2021.706650
  13. FEBS J. 2021 Sep 08.
      Reactive oxygen species (ROS) are not just a by-product of cellular metabolic processes but act as signalling molecules that regulate both physiological and pathophysiological processes. A close connection exists in cells between redox homeostasis and cellular metabolism. In this review, we describe how intracellular redox state and glycolytic intermediary metabolism are closely coupled. On the one hand, ROS signalling can control glycolytic intermediary metabolism by direct regulation of the activity of key metabolic enzymes and indirect regulation via redox-sensitive transcription factors. On the other hand, metabolic adaptation and reprogramming in response to physiological or pathological stimuli regulate intracellular redox balance, through mechanisms such as the generation of reducing equivalents. We also discuss the impact of these intermediary metabolism-redox circuits in physiological and disease settings across different tissues. A better understanding of the mechanisms regulating these intermediary metabolism-redox circuits will be crucial to the development of novel therapeutic strategies.
    Keywords:  Intermediary metabolism; Redox; Warburg effect; anabolism; reactive oxygen species
    DOI:  https://doi.org/10.1111/febs.16191
  14. Nat Commun. 2021 Sep 06. 12(1): 5282
      Homeostasis is one of the fundamental concepts in physiology. Despite remarkable progress in our molecular understanding of amino acid transport, metabolism and signaling, it remains unclear by what mechanisms cytosolic amino acid concentrations are maintained. We propose that amino acid transporters are the primary determinants of intracellular amino acid levels. We show that a cell's endowment with amino acid transporters can be deconvoluted experimentally and used this data to computationally simulate amino acid translocation across the plasma membrane. Transport simulation generates cytosolic amino acid concentrations that are close to those observed in vitro. Perturbations of the system are replicated in silico and can be applied to systems where only transcriptomic data are available. This work explains amino acid homeostasis at the systems-level, through a combination of secondary active transporters, functionally acting as loaders, harmonizers and controller transporters to generate a stable equilibrium of all amino acid concentrations.
    DOI:  https://doi.org/10.1038/s41467-021-25563-x
  15. Cell Death Dis. 2021 Sep 04. 12(9): 835
      Quiescence has been observed in stem cells (SCs), including adult SCs and cancer SCs (CSCs). Conventional chemotherapies mostly target proliferating cancer cells, while the quiescent state favors CSCs escape to chemotherapeutic drugs, leaving risks for tumor recurrence or metastasis. The tumor microenvironment (TME) provides various signals that maintain resident quiescent CSCs, protect them from immune surveillance, and facilitates their recurrence potential. Since the TME has the potential to support and initiate stem cell-like programs in cancer cells, targeting the TME components may prove to be a powerful modality for the treatment of chemotherapy resistance. In addition, an increasing number of studies have discovered that CSCs exhibit the potential of metabolic flexibility when metabolic substrates are limited, and display increased robustness in response to stress. Accompanied by chemotherapy that targets proliferative cancer cells, treatments that modulate CSC quiescence through the regulation of metabolic pathways also show promise. In this review, we focus on the roles of metabolic flexibility and the TME on CSCs quiescence and further discuss potential treatments of targeting CSCs and the TME to limit chemotherapy resistance.
    DOI:  https://doi.org/10.1038/s41419-021-04116-6
  16. Neuromolecular Med. 2021 Sep 06.
      As a multi-functional cellular organelle, mitochondrial metabolic reprogramming is well recognized as a hallmark of cancer. The center of mitochondrial metabolism is oxidative phosphorylation (OXPHOS), in which cells use enzymes to oxidize nutrients, thereby converting the chemical energy to the biological energy currency ATPs. OXPHOS also creates the mitochondrial membrane potential and serve as the driving force of other mitochondrial metabolic pathways and experiences significant reshape in the different stages of tumor progression. In this minireview, we reviewed the major mitochondrial pathways that are connected to OXPHOS and are affected in cancer cells. In addition, we summarized the function of novel bio-active molecules targeting mitochondrial metabolic processes such as OXPHOS, mitochondrial membrane potential and mitochondrial dynamics. These molecules exhibit intriguing preclinical and clinical results and have been proven to be promising antitumor candidates in recent studies.
    Keywords:  Glioblastoma; Mitochondrial dysfunction; OXPHOS inhibitors
    DOI:  https://doi.org/10.1007/s12017-021-08678-8
  17. Bioengineered. 2021 Dec;12(1): 5323-5333
      N6-methyladenosine (m6A) methylation participates in the progression of bladder cancer (BCa). Nevertheless, the regulatory mechanism of alpha-ketoglutarate-dependent dioxygenase FTO influencing the BCa progression has still remained elusive. In this study, to investigate the tumor-suppressive effects of FTO via m6A RNA methylation on BCa patients, a total of 15 cancer tissues and adjacent normal tissues (ANTs) were collected from BCa patients who received tumor resection in our hospital from September 2015 to December 2019. We found that the FTO expression was significantly reduced in cancer tissues compared with that in ANTs, which indicated a lower malignant potential and a higher overall survival rate. It was revealed that overexpression of FTO in two human urinary BCa cell lines (HT-1197 and HT-1376) significantly decreased the cell proliferation and invasion abilities compared with the negative controls, whereas the cell apoptosis was markedly enhanced. In addition, we noted that the changes in m6A methylation level mainly appeared at 5' untranslated region (5' UTR) of MALAT1 and NOTCH1 transcripts, and at 3' UTR of CSNK2A2 and ITGA6 transcripts, responding to the overexpression of FTO. Mechanistically, we found that the splicing factor, proline- and glutamine-rich (SFPQ) could influence the FTO-mediated m6A RNA demethylation, eventually affecting the gene expression. This study provided a new insight into the relationship between the FTO expression and the m6A RNA methylation, assisting scholars to better understand the pathogenesis of BCa.
    Keywords:  FTO; bladder cancer; m6A rna methylation; sfpq
    DOI:  https://doi.org/10.1080/21655979.2021.1964893
  18. Cell Discov. 2021 Sep 07. 7(1): 80
      Metastasis is the primary cause of cancer-related mortality in colorectal cancer (CRC) patients. How to improve therapeutic options for patients with metastatic CRC is the core question for CRC treatment. However, the complexity and diversity of stromal context of the tumor microenvironment (TME) in liver metastases of CRC have not been fully understood, and the influence of stromal cells on response to chemotherapy is unclear. Here we performed an in-depth analysis of the transcriptional landscape of primary CRC, matched liver metastases and blood at single-cell resolution, and a systematic examination of transcriptional changes and phenotypic alterations of the TME in response to preoperative chemotherapy (PC). Based on 111,292 single-cell transcriptomes, our study reveals that TME of treatment-naïve tumors is characterized by the higher abundance of less-activated B cells and higher heterogeneity of tumor-associated macrophages (TAMs). By contrast, in tumors treated with PC, we found activation of B cells, lower diversity of TAMs with immature and less activated phenotype, lower abundance of both dysfunctional T cells and ECM-remodeling cancer-associated fibroblasts, and an accumulation of myofibroblasts. Our study provides a foundation for future investigation of the cellular mechanisms underlying liver metastasis of CRC and its response to PC, and opens up new possibilities for the development of therapeutic strategies for CRC.
    DOI:  https://doi.org/10.1038/s41421-021-00312-y