bims-glecem Biomed News
on Glycogen metabolism in exercise, cancer and energy metabolism
Issue of 2023–01–01
three papers selected by
Dipsikha Biswas, Københavns Universitet



  1. Front Pharmacol. 2022 ;13 1089558
      Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease characterized by hyperglycemia. The fruits of Zanthoxylum bungeanum Maxim. is a common spice and herbal medicine in China, and hydroxy-α-sanshool (HAS) is the most abundant amide in Z. bungeanum and reported to have significant hypoglycemic effects. The purpose of this study was to evaluate the ameliorative effects of HAS on T2DM and the potential mechanisms responsible for those effects. An acute toxicity test revealed the median lethal dose (LD50) of HAS is 73 mg/kg. C57BL/6 J mice were fed a high-fat diet and given an intraperitoneal injection of streptozotocin (STZ) to induce T2DM in mice to evaluate the hypoglycemic effects of HAS. The results showed that HAS significantly reduced fasting blood glucose, reduced pathological changes in the liver and pancreas, and increased liver glycogen content. In addition, glucosamine (GlcN)-induced HepG2 cells were used to establish an insulin resistance cell model and explore the molecular mechanisms of HAS activity. The results demonstrated that HAS significantly increases glucose uptake and glycogen synthesis in HepG2 cells and activates the PI3K/Akt pathway in GlcN-induced cells, as well as increases GSK-3β phosphorylation, suppresses phosphorylation of glycogen synthase (GS) and increases glycogen synthesis in liver cells. Furthermore, these effects of HAS were blocked by the PI3K inhibitor LY294002. The results of our study suggest that HAS reduces hepatic insulin resistance and increases hepatic glycogen synthesis by activating the PI3K/Akt/GSK-3β/GS signaling pathway.
    Keywords:  PI3K/Akt/GSK-3β pathway; Zanthoxylum bungeanum Maxim.; glycogen synthesis; hydroxy-α-sanshool; type 2 diabetes mellitus
    DOI:  https://doi.org/10.3389/fphar.2022.1089558
  2. Mol Cells. 2022 Dec 31. 45(12): 911-922
      A structural protein of SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), nucleocapsid (N) protein is phosphorylated by glycogen synthase kinase (GSK)-3 on the serine/arginine (SR) rich motif located in disordered regions. Although phosphorylation by GSK-3β constitutes a critical event for viral replication, the molecular mechanism underlying N phosphorylation is not well understood. In this study, we found the putative alpha-helix L/FxxxL/AxxRL motif known as the GSK-3 interacting domain (GID), found in many endogenous GSK-3β binding proteins, such as Axins, FRATs, WWOX, and GSKIP. Indeed, N interacts with GSK-3β similarly to Axin, and Leu to Glu substitution of the GID abolished the interaction, with loss of N phosphorylation. The N phosphorylation is also required for its structural loading in a virus-like particle (VLP). Compared to other coronaviruses, N of Sarbecovirus lineage including bat RaTG13 harbors a CDK1-primed phosphorylation site and Gly-rich linker for enhanced phosphorylation by GSK-3β. Furthermore, we found that the S202R mutant found in Delta and R203K/G204R mutant found in the Omicron variant allow increased abundance and hyper-phosphorylation of N. Our observations suggest that GID and mutations for increased phosphorylation in N may have contributed to the evolution of variants.
    Keywords:  Axin; Delta and Omicron variants; glycogen synthase kinase-3; nucleocapsid; phosphorylation; severe acute respiratory syndrome coronavirus 2
    DOI:  https://doi.org/10.14348/molcells.2022.0130
  3. Mol Genet Genomic Med. 2022 Dec 29. e2099
       BACKGROUND: Congenital disorder of glycosylation (CDG) and Glycogen storage diseases (GSDs) are inborn metabolic disorders caused by defects in some metabolic pathways. These disorders are a heterogeneous group of diseases caused by impaired O- as well as N-glycosylation pathways. CDG patients show a broad spectrum of clinical presentations; many GSD types (PGM1-CDG) have muscle involvement and hypoglycemia.
    METHODS: We applied WES for all seven patients presenting GSD and CDG symptoms. Then we analyzed the data using various tools to predict pathogenic variants in genes related to the patients' diseases.
    RESULTS: In the present study, we identified pathogenic variants in Iranian patients suffering from GSD and CDG, which can be helpful for patient management, and family counseling. We detected seven pathogenic variants using whole exome sequencing (WES) in known AGL (c.1998A>G, c.3635T>C, c.3682C>T), PGM1 (c.779G>A), DPM1 (c.742T>C), RFT1 (c.127A>G), and GAA (c.1314C>A) genes.
    CONCLUSION: The suspected clinical diagnosis of CDG and GSD patients was confirmed by identifying missense and or nonsense mutations in PGM1, DPM1, RFT1, GAA, and AGL genes by WES of all 7 cases. This study helps us understand the scenario of the disorder causes and consider the variants for quick disease diagnosis.
    Keywords:  CDG; GSD; Iran; Pathogenic genetic variants; WES
    DOI:  https://doi.org/10.1002/mgg3.2099