bims-ginsta Biomed News
on Genome instability
Issue of 2023–12–31
fourteen papers selected by
Jinrong Hu, National University of Singapore



  1. Mol Cell. 2023 Dec 20. pii: S1097-2765(23)01012-2. [Epub ahead of print]
      DNA replication produces a global disorganization of chromatin structure that takes hours to be restored. However, how these chromatin rearrangements affect the regulation of gene expression and the maintenance of cell identity is not clear. Here, we use ChOR-seq and ChrRNA-seq experiments to analyze RNA polymerase II (RNAPII) activity and nascent RNA synthesis during the first hours after chromatin replication in human cells. We observe that transcription elongation is rapidly reactivated in nascent chromatin but that RNAPII abundance and distribution are altered, producing heterogeneous changes in RNA synthesis. Moreover, this first wave of transcription results in RNAPII blockages behind the replication fork, leading to changes in alternative splicing. Altogether, our results deepen our understanding of how transcriptional programs are regulated during cell division and uncover molecular mechanisms that explain why chromatin replication is an important source of gene expression variability.
    Keywords:  ChOR-seq; RNAPII; cell division; cell identity; chromatin; gene expression; replication; splicing; transcription; transcription-replication conflicts
    DOI:  https://doi.org/10.1016/j.molcel.2023.11.036
  2. PLoS Genet. 2023 Dec 27. 19(12): e1011090
      Oocyte meiotic spindles mediate the expulsion of ¾ of the genome into polar bodies to generate diploid zygotes in nearly all animal species. Failures in this process result in aneuploid or polyploid offspring that are typically inviable. Accurate meiotic chromosome segregation and polar body extrusion require the spindle to elongate while maintaining its structural integrity. Previous studies have implicated three hypothetical activities during this process, including microtubule crosslinking, microtubule sliding and microtubule polymerization. However, how these activities regulate spindle rigidity and elongation as well as the exact proteins involved in the activities remain unclear. We discovered that C. elegans meiotic anaphase spindle integrity is maintained through redundant microtubule crosslinking activities of the Kinesin-5 family motor BMK-1, the microtubule bundling protein SPD-1/PRC1, and the Kinesin-4 family motor, KLP-19. Using time-lapse imaging, we found that single depletion of KLP-19KIF4A, SPD-1PRC1 or BMK-1Eg5 had minimal effects on anaphase B spindle elongation velocity. In contrast, double depletion of SPD-1PRC1 and BMK-1Eg5 or double depletion of KLP-19KIF4A and BMK-1Eg5 resulted in spindles that elongated faster, bent in a myosin-dependent manner, and had a high rate of polar body extrusion errors. Bending spindles frequently extruded both sets of segregating chromosomes into two separate polar bodies. Normal anaphase B velocity was observed after double depletion of KLP-19KIF4A and SPD-1PRC1. These results suggest that KLP-19KIF4A and SPD-1PRC1 act in different pathways, each redundant with a separate BMK-1Eg5 pathway in regulating meiotic spindle elongation. Depletion of ZYG-8, a doublecortin-related microtubule binding protein, led to slower anaphase B spindle elongation. We found that ZYG-8DCLK1 acts by excluding SPD-1PRC1 from the spindle. Thus, three mechanistically distinct microtubule regulation modules, two based on crosslinking, and one based on exclusion of crosslinkers, power the mechanism that drives spindle elongation and structural integrity during anaphase B of C.elegans female meiosis.
    DOI:  https://doi.org/10.1371/journal.pgen.1011090
  3. Dev Cell. 2023 Dec 18. pii: S1534-5807(23)00650-0. [Epub ahead of print]
      Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
    Keywords:  TAZ; YAP; angiogenesis; bone; development; growth plate; mechanobiology
    DOI:  https://doi.org/10.1016/j.devcel.2023.11.029
  4. Elife. 2023 Dec 27. pii: RP89467. [Epub ahead of print]12
      During mitosis, kinetochore-attached microtubules form bundles (k-fibers) in which many filaments grow and shorten in near-perfect unison to align and segregate each chromosome. However, individual microtubules grow at intrinsically variable rates, which must be tightly regulated for a k-fiber to behave as a single unit. This exquisite coordination might be achieved biochemically, via selective binding of polymerases and depolymerases, or mechanically, because k-fiber microtubules are coupled through a shared load that influences their growth. Here, we use a novel dual laser trap assay to show that microtubule pairs growing in vitro are coordinated by mechanical coupling. Kinetic analyses show that microtubule growth is interrupted by stochastic, force-dependent pauses and indicate persistent heterogeneity in growth speed during non-pauses. A simple model incorporating both force-dependent pausing and persistent growth speed heterogeneity explains the measured coordination of microtubule pairs without any free fit parameters. Our findings illustrate how microtubule growth may be synchronized during mitosis and provide a basis for modeling k-fiber bundles with three or more microtubules, as found in many eukaryotes.
    Keywords:  B. taurus; S. cerevisiae; cell biology; coordination; dynamic instability; human; k-fiber; kinetochore; mechanobiology; microtubule; mitosis; physics of living systems; spindle; stochastic pausing
    DOI:  https://doi.org/10.7554/eLife.89467
  5. Autophagy. 2023 Dec 28.
      The endoplasmic reticulum (ER) extends to the outer (ONM) and the inner (INM) nuclear membrane forming the nuclear envelope (NE) that delimits the nucleoplasm containing the cell genome. Unfolded protein responses (UPRs) and reticulophagy responses increase or reduce ER size and activities, respectively. If dynamic changes of the ER are transmitted to the contiguous NE was not known. In our recent publication, we report on the transmission of stress-induced ER expansion to the NE, which requires disassembly of the Linker of Nucleoskeleton and Cytoskeleton (LINC) complexes deputed to ensure a physical connection between the cytoplasmic cytoskeleton and the nuclear lamina and to maintain the width between INM and ONM within 50 nm. LINC complexes disassembly relies on reduction of the disulfide bond that covalently links SUN proteins in the INM and KASH proteins (SYNE/NESPRIN proteins in mammals) in the ONM by the ONM-resident reductase TMX4. Upon stress resolution, the physiological shape of the NE is re-established by SEC62-driven ONM-phagy, where ONM-derived vesicles are directly captured by RAB7- and LAMP1-positive endolysosomes in processes that proceed via asymmetric microautophagy of the NE.
    Keywords:  ER-phagy; ONM-phagy
    DOI:  https://doi.org/10.1080/15548627.2023.2299123
  6. J Cell Sci. 2023 Dec 15. pii: jcs261200. [Epub ahead of print]136(24):
      Skeletal muscle stem cells (MuSCs, also called satellite cells) are the source of the robust regenerative capability of this tissue. The hallmark property of MuSCs at homeostasis is quiescence, a reversible state of cell cycle arrest required for long-term preservation of the stem cell population. MuSCs reside between an individual myofiber and an enwrapping basal lamina, defining the immediate MuSC niche. Additional cell types outside the basal lamina, in the interstitial space, also contribute to niche function. Quiescence is actively maintained by multiple niche-derived signals, including adhesion molecules presented from the myofiber surface and basal lamina, as well as soluble signaling factors produced by myofibers and interstitial cell types. In this Cell Science at a Glance article and accompanying poster, we present the most recent information on how niche signals promote MuSC quiescence and provide perspectives for further research.
    Keywords:  Cell adhesion; Cell signaling; Muscle; Muscle stem cell; Quiescence; Stem cell niche
    DOI:  https://doi.org/10.1242/jcs.261200
  7. Nat Commun. 2023 Dec 27. 14(1): 8501
      DNA polymerase (DNAP) can correct errors in DNA during replication by proofreading, a process critical for cell viability. However, the mechanism by which an erroneously incorporated base translocates from the polymerase to the exonuclease site and the corrected DNA terminus returns has remained elusive. Here, we present an ensemble of nine high-resolution structures representing human mitochondrial DNA polymerase Gamma, Polγ, captured during consecutive proofreading steps. The structures reveal key events, including mismatched base recognition, its dissociation from the polymerase site, forward translocation of DNAP, alterations in DNA trajectory, repositioning and refolding of elements for primer separation, DNAP backtracking, and displacement of the mismatched base into the exonuclease site. Altogether, our findings suggest a conserved 'bolt-action' mechanism of proofreading based on iterative cycles of DNAP translocation without dissociation from the DNA, facilitating primer transfer between catalytic sites. Functional assays and mutagenesis corroborate this mechanism, connecting pathogenic mutations to crucial structural elements in proofreading steps.
    DOI:  https://doi.org/10.1038/s41467-023-44198-8
  8. Cell Stem Cell. 2023 Dec 13. pii: S1934-5909(23)00429-0. [Epub ahead of print]
      Stem cells are known for their resilience and enhanced activity post-stress. The mammary gland undergoes frequent remodeling and is subjected to recurring stress during the estrus cycle, but it remains unclear how mammary stem cells (MaSCs) respond to the stress and contribute to regeneration. We discovered that cytotoxic stress-induced activation of CD11c+ ductal macrophages aids stem cell survival and prevents differentiation. These macrophages boost Procr+ MaSC activity through IL1β-IL1R1-NF-κB signaling during the estrus cycle in an oscillating manner. Deleting IL1R1 in MaSCs results in stem cell loss and skewed luminal differentiation. Moreover, under cytotoxic stress from the chemotherapy agent paclitaxel, ductal macrophages secrete higher IL1β levels, promoting MaSC survival and preventing differentiation. Inhibiting IL1R1 sensitizes MaSCs to paclitaxel. Our findings reveal a recurring inflammatory process that regulates regeneration, providing insights into stress-induced inflammation and its impact on stem cell survival, potentially affecting cancer therapy efficacy.
    Keywords:  CD11c(+) ductal macrophage; IL1β-IL1R1; NF-κB; Procr(+) MaSC; cytotoxic stress; estrus cycle; mammary gland
    DOI:  https://doi.org/10.1016/j.stem.2023.11.012
  9. Cell Stem Cell. 2023 Dec 20. pii: S1934-5909(23)00402-2. [Epub ahead of print]
      Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.
    Keywords:  Oct4; POU linker; Sox17; Sox2; Sox2/Oct4 heterodimer structure; bovine; developmental potential; engineered transcription factor; human; iPSC; mouse; naive pluripotency; non-human primate; porcine; reprogramming; reset; super-SOX; tetraploid complementation
    DOI:  https://doi.org/10.1016/j.stem.2023.11.010
  10. Am J Physiol Cell Physiol. 2023 Dec 25.
      Cardiac fibroblasts are essential for the homeostasis of the extracellular matrix whose remodeling in many cardiovascular diseases leads to fibrosis. Long noncoding RNAs (lncRNAs) are associated with cardiac pathologies, but their functions in cardiac fibroblasts and contributions to cardiac fibrosis remain unclear. Here, we aimed to identify fibroblast-enriched lncRNAs essential in myocardial infarction (MI)-induced fibrosis, and explore the molecular mechanisms responsible for their functions. Global lncRNA profiling was performed in post-MI mouse heart ventricles, TGF-β-treated primary cardiac fibroblasts, and confirmed in published datasets. We identified the cardiac fibroblast-enriched lncPostn, whose expression is stimulated in cardiac fibrosis induced by MI and the extracellular growth factor TGF-β. The promotor of lncPostn contains a functional TGF-β response element and lncPostn knockdown results in suppression of TGF-β-stimulated cardiac fibroblast activation and improved cardiac functions post-MI. LncPostn stabilizes and recruits EP300 to the promoter of the pro-fibrotic periostin and represents a major mechanism for its transcriptional activation. Moreover, both MI and TGF-β enhance lncPostn expression while suppressing the cellular growth gatekeeper p53. TGF-β and p53 knockdown-induced pro-fibrotic gene expression and fibrosis occur mainly through lncPostn and show additive effects. Finally, levels of serum lncPostn are significantly increased in patients' post-acute MI and show a strong correlation with fibrosis markers, revealing a potential biomarker of cardiac fibrosis. Our findings identify the fibroblast-enriched lncPostn as a potent pro-fibrotic factor, providing a transcriptional link between TGF-β and p53 signaling pathways to regulate fibrosis in cardiac fibroblasts.
    Keywords:  LncRNA; TGF-β; cardiac fibrosis; p53; periostin
    DOI:  https://doi.org/10.1152/ajpcell.00515.2023
  11. Mol Cell. 2023 Dec 20. pii: S1097-2765(23)00980-2. [Epub ahead of print]
      The anti-cancer target hRpn13 is a proteasome substrate receptor. However, hRpn13-targeting molecules do not impair its interaction with proteasomes or ubiquitin, suggesting other critical cellular activities. We find that hRpn13 depletion causes correlated proteomic and transcriptomic changes, with pronounced effects in myeloma cells for cytoskeletal and immune response proteins and bone-marrow-specific arginine deiminase PADI4. Moreover, a PROTAC against hRpn13 co-depletes PADI4, histone deacetylase HDAC8, and DNA methyltransferase MGMT. PADI4 binds and citrullinates hRpn13 and proteasomes, and proteasomes from PADI4-inhibited myeloma cells exhibit reduced peptidase activity. When off proteasomes, hRpn13 can bind HDAC8, and this interaction inhibits HDAC8 activity. Further linking hRpn13 to transcription, its loss reduces nuclear factor κB (NF-κB) transcription factor p50, which proteasomes generate by cleaving its precursor protein. NF-κB inhibition depletes hRpn13 interactors PADI4 and HDAC8. Altogether, we find that hRpn13 acts dually in protein degradation and expression and that proteasome constituency and, in turn, regulation varies by cell type.
    Keywords:  HDAC8; MGMT; MYH10; NF-κB; PADI4; citrulline; cytoskeleton; gene regulation; hRpn13; proteasome
    DOI:  https://doi.org/10.1016/j.molcel.2023.11.035
  12. Mol Cell Proteomics. 2023 Dec 21. pii: S1535-9476(23)00217-7. [Epub ahead of print] 100706
      Impaired extracellular matrix (ECM) remodelling is a hallmark of many chronic inflammatory disorders that can lead to cellular dysfunction, ageing, and disease progression. The ECM of the aged heart and its effects on cardiac cells during chronological and pathological ageing are poorly understood across species. For this purpose, we first used mass spectrometry-based proteomics to quantitatively characterize age-related remodelling of the left ventricle (LV) of mice and humans during chronological and pathological (Hutchinson-Gilford progeria syndrome (HGPS)) ageing. Of the approximately 300 ECM and ECM-associated proteins quantified (named as Matrisome), we identified 13 proteins that were increased during aging, including lactadherin (MFGE8), collagen VI α6 (COL6A6), vitronectin (VTN) and immunoglobulin heavy constant mu (IGHM), whereas fibulin-5 (FBLN5) was decreased in most of the data sets analysed. We show that lactadherin accumulates with age in large cardiac blood vessels and when immobilized, triggers phosphorylation of several phosphosites of GSK3B, MAPK isoforms 1, 3, and 14, and MTOR kinases in aortic endothelial cells (ECs). In addition, immobilized lactadherin increased the expression of pro-inflammatory markers associated with an ageing phenotype. These results extend our knowledge of the LV proteome remodelling induced by chronological and pathological ageing in different species (mouse and human). The lactadherin-triggered changes in the proteome and phosphoproteome of ECs suggest a straight link between ECM component remodelling and the ageing process of ECs, which may provide an additional layer to prevent cardiac ageing.
    DOI:  https://doi.org/10.1016/j.mcpro.2023.100706
  13. Dev Biol. 2023 Dec 23. pii: S0012-1606(23)00209-9. [Epub ahead of print]507 11-19
      Notch signaling controls numerous key cellular processes including cell fate determination and cell proliferation. Its malfunction has been linked to many developmental abnormalities and human disorders. Overactivation of Notch signaling is shown to be oncogenic. Retention of excess Notch protein in the endoplasmic reticulum (ER) can lead to altered Notch signaling and cell fate, but the mechanism is not well understood. In this study, we show that V5-tagged or untagged exogenous Notch is retained in the ER when overexpressed in fly tissues. Furthermore, we show that Notch retention in the ER leads to robust ER enlargement and elicits a rough eye phenotype. Gain-of-function of unfolded protein response (UPR) factors IRE1 or spliced Xbp1 (Xbp1-s) alleviates Notch accumulation in the ER, restores ER morphology and ameliorates the rough eye phenotype. Our results uncover a pivotal role of the IRE1/Xbp1 axis in regulating the detrimental effect of ER-localized excess Notch protein during development and tissue homeostasis.
    Keywords:  Drosophila melanogaster; Endoplasmic reticulum (ER); IRE1; Notch; Unfolded protein response (UPR)
    DOI:  https://doi.org/10.1016/j.ydbio.2023.12.007
  14. Circulation. 2023 Dec 28.
       BACKGROUND: Progressive remodeling of cardiac gene expression underlies decline in cardiac function, eventually leading to heart failure. However, the major determinants of transcriptional network switching from normal to failed hearts remain to be determined.
    METHODS: In this study, we integrated human samples, genetic mouse models, and genomic approaches, including bulk RNA sequencing, single-cell RNA sequencing, chromatin immunoprecipitation followed by high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, to identify the role of chromatin remodeling complex INO80 in heart homeostasis and dysfunction.
    RESULTS: The INO80 chromatin remodeling complex was abundantly expressed in mature cardiomyocytes, and its expression further increased in mouse and human heart failure. Cardiomyocyte-specific overexpression of Ino80, its core catalytic subunit, induced heart failure within 4 days. Combining RNA sequencing, high-throughput sequencing, and assay for transposase-accessible chromatin with high-throughput sequencing, we revealed INO80 overexpression-dependent reshaping of the nucleosomal landscape that remodeled a core set of transcription factors, most notably the MEF2 family, whose target genes were closely associated with cardiac function. Conditional cardiomyocyte-specific deletion of Ino80 in an established mouse model of heart failure demonstrated remarkable preservation of cardiac function.
    CONCLUSIONS: In summary, our findings shed light on the INO80-dependent remodeling of the chromatin landscape and transcriptional networks as a major mechanism underlying cardiac dysfunction in heart failure, and suggest INO80 as a potential preventative or interventional target.
    Keywords:  INO80; cardiac function; chromatin remodeling complex; heart failure; transcriptional regulatory networks
    DOI:  https://doi.org/10.1161/CIRCULATIONAHA.123.065440