bims-gamemb Biomed News
on Gamete and embryo metabolism
Issue of 2022‒01‒30
three papers selected by
Cameron A. Schmidt
East Carolina University


  1. Sex Dev. 2022 Jan 27. 1-16
      BACKGROUND: The germ cell lineage involves dynamic epigenetic changes during its formation and differentiation that are completely different from those of the somatic cell lineage. Metabolites and metabolic pathways have been reported as key factors related to the regulation of epigenetics as cofactors and substrates. However, our knowledge about the metabolic characteristics of germ cells, especially during the fetal stage, and their transition during differentiation is quite limited due to the rarity of the cells. Nevertheless, recent developments in omics technologies have made it possible to extract comprehensive metabolomic features of germ cells.SUMMARY: In this review, we present the latest researches on the metabolic properties of germ cells in 4 stages: primordial germ cell specification, fetal germ cell differentiation, spermatogenesis, and oogenesis. At every stage, extensive published data has been accumulated on energy metabolism, and it is possible to describe its changes during germ cell differentiation in detail. As pluripotent stem cells differentiate into germ cells, energy metabolism shifts from glycolysis to oxidative phosphorylation; however, in spermatogenesis, glycolytic pathways are also temporarily dominant in spermatogonial stem cells. Although the significance of metabolic pathways other than energy metabolism in germ cell differentiation is largely unknown, the relation of the pentose phosphate pathway and Ser-Gly-one-carbon metabolism with germ cell properties has been suggested at various stages. We further discuss the relationship between these characteristic metabolic pathways and epigenetic regulation during germ cell specification and differentiation. Finally, the relevance of dietary and supplemental interventions on germ cell function and epigenomic regulation is also discussed. Key Messages: Comprehensive elucidation of metabolic features and metabolism-epigenome crosstalk in germ cells is important to reveal how the characteristic metabolic pathways are involved in the germ cell regulation. The accumulation of such insights would lead to suggestions for optimal diets and supplements to maintain reproductive health through modulating metabolic and epigenetic status of germ cells.
    Keywords:  Development; Differentiation; Epigenome; Germ cells; Metabolism
    DOI:  https://doi.org/10.1159/000520662
  2. Cell Mol Life Sci. 2022 Jan 24. 79(2): 91
      Mitochondria tailor their morphology to execute their specialized functions in different cell types and/or different environments. During spermatogenesis, mitochondria undergo continuous morphological and distributional changes with germ cell development. Deficiencies in these processes lead to mitochondrial dysfunction and abnormal spermatogenesis, thereby causing male infertility. In recent years, mitochondria have attracted considerable attention because of their unique role in the regulation of piRNA biogenesis in male germ cells. In this review, we describe the varied characters of mitochondria and focus on key mitochondrial factors that play pivotal roles in the regulation of spermatogenesis, from primordial germ cells to spermatozoa, especially concerning metabolic shift, stemness and reprogramming, mitochondrial transformation and rearrangement, and mitochondrial defects in human sperm. Further, we discuss the molecular mechanisms underlying these processes.
    Keywords:  Gene mutation; Human infertility; Male germ cells; Mitochondria; Spermatogenesis
    DOI:  https://doi.org/10.1007/s00018-022-04134-3
  3. Reproduction. 2022 Jan 01. pii: REP-21-0431.R1. [Epub ahead of print]
      The classic roles of mitochondria in energy production, metabolism, and apoptosis have been well defined. However, a growing body of evidence suggests that mitochondria are also active players in regulating stem cell fate decision and lineage commitment via signaling transduction, protein modification, and epigenetic modulations. This is particularly interesting for spermatogenesis, during which germ cells demonstrate changing metabolic requirements across various stages of development. It is increasingly recognized that proper male fertility depends on the exquisitely controlled plasticity of mitochondrial features, activities, and functional states. The unique role of mitochondria in germ cell non-coding RNA processing further adds another layer of complexity to mitochondrial regulation during spermatogenesis. In this review, we will discuss potential regulatory mechanisms of how mitochondria swiftly reshape their features, activities, and functions to support critical germ cell fate transitions during spermatogenesis. In addition, we will also review recent findings of how mitochondrial regulators coordinate with germline proteins to participate in germ cell-specific activities.
    DOI:  https://doi.org/10.1530/REP-21-0431