bims-gamemb Biomed News
on Gamete and embryo metabolism
Issue of 2021–11–28
twenty papers selected by
Cameron A. Schmidt, East Carolina University



  1. Elife. 2021 Nov 22. pii: e73808. [Epub ahead of print]10
      Mitochondrial metabolism is of central importance to diverse aspects of cell and developmental biology. Defects in mitochondria are associated with many diseases, including cancer, neuropathology, and infertility. Our understanding of mitochondrial metabolism in situ and dysfunction in diseases are limited by the lack of techniques to measure mitochondrial metabolic fluxes with sufficient spatiotemporal resolution. Herein, we developed a new method to infer mitochondrial metabolic fluxes in living cells with subcellular resolution from fluorescence lifetime imaging of NADH. This result is based on the use of a generic coarse-grained NADH redox model. We tested the model in mouse oocytes and human tissue culture cells subject to a wide variety of perturbations by comparing predicted fluxes through the electron transport chain (ETC) to direct measurements of oxygen consumption rate. Interpreting the FLIM measurements of NADH using this model, we discovered a homeostasis of ETC flux in mouse oocytes: perturbations of nutrient supply and energy demand of the cell do not change ETC flux despite significantly impacting NADH metabolic state. Furthermore, we observed a subcellular spatial gradient of ETC flux in mouse oocytes and found that this gradient is primarily a result of a spatially heterogeneous mitochondrial proton leak. We concluded from these observations that ETC flux in mouse oocytes is not controlled by energy demand or supply, but by the intrinsic rates of mitochondrial respiration.
    Keywords:  biochemistry; chemical biology; human; mouse; physics of living systems
    DOI:  https://doi.org/10.7554/eLife.73808
  2. Animals (Basel). 2021 Oct 28. pii: 3077. [Epub ahead of print]11(11):
      Equine oocyte vitrification would benefit the growing in vitro embryo production programs, but further optimization of the protocol is necessary to reach clinical efficiency. Therefore, we aimed to perform a direct comparison of non-permeating and permeating cryoprotective agents (CPAs) during the vitrification and warming of equine immature oocytes. In the first experiment, cumulus oocytes complexes (COCs) were vitrified comparing sucrose, trehalose, and galactose in combination with ethylene glycol (EG) and dimethyl sulfoxide (DMSO). In the second experiment, the COCs were vitrified using three mixtures of permeating CPAs in a 50:50 volume ratio (ethylene glycol-dimethyl sulfoxide (ED), propylene glycol-ethylene glycol (PE), and propylene glycol-dimethyl sulfoxide (PD)) with galactose and warmed in different galactose concentrations (0.3 or 0.5 mol/L). Overall, all the treatments supported blastocyst formation, but the developmental rates were lower for all the vitrified groups in the first (4.3 to 7.6%) and the second (3.5 to 9.4%) experiment compared to the control (26.5 and 34.2%, respectively; p < 0.01). In the first experiment, the maturation was not affected by vitrification. The sucrose exhibited lower cleavage than the control (p = 0.02). Although the galactose tended to have lower maturation than trehalose (p = 0.060) and control (p = 0.069), the highest numerical cleavage and blastocyst rates were obtained with this CPA. In the second experiment, the maturation, cleavage, and blastocyst rates were similar between the treatments. Compared to the control, only the ED reached similar maturation (p = 0.02) and PE similar cleavage (p = 0.1). The galactose concentration during warming did not affect the maturation, cleavage, or blastocyst rates (p > 0.1), but the PE-0.3 exhibited the highest blastocyst rate (15.1%) among the treatments, being the only one comparable to the control (34.2%). As such, PE-galactose provides a valuable option for equine immature oocyte vitrification and should be considered for the future optimization of the protocol.
    Keywords:  ICSI; cryoprotective agents; equine; oocyte; vitrification; warming
    DOI:  https://doi.org/10.3390/ani11113077
  3. Adv Exp Med Biol. 2022 ;1354 49-62
      The period of conceptus (embryo and extraembryonic membrane) development between fertilization and implantation in mammalian species is critical as it sets the stage for placental and fetal development. The trophectoderm and endoderm of pre-implantation ovine and porcine conceptuses undergo elongation, which requires rapid proliferation, migration, and morphological modification of the trophectoderm cells. These complex events occur in a hypoxic intrauterine environment and are supported through the transport of secretions from maternal endometrial glands to the conceptus required for the biochemical processes of cell proliferation, migration, and differentiation. The conceptus utilizes glucose provided by the mother to initiate metabolic pathways that provide energy and substrates for other metabolic pathways. Fructose, however, is in much greater abundance than glucose in amniotic and allantoic fluids, and fetal blood during pregnancy. Despite this, the role(s) of fructose is largely unknown even though a switch to fructosedriven metabolism in subterranean rodents and some cancers are key to their adaptation to hypoxic environments.
    Keywords:  Conceptus Development; Fructose; Glucose; Pregnancy
    DOI:  https://doi.org/10.1007/978-3-030-85686-1_3
  4. Dev Biol. 2021 Nov 22. pii: S0012-1606(21)00235-9. [Epub ahead of print]
      Spermatogenesis is a dynamic process of cellular differentiation that generates the mature spermatozoa required for reproduction. Errors that arise during this process can lead to sterility due to low sperm counts and malformed or immotile sperm. While it is estimated that 1 out of 7 human couples encounter infertility, the underlying cause of male infertility can only be identified in 50% of cases. Here, we describe and examine the genetic requirements for missing minor mitochondria (mmm), sterile affecting ciliogenesis (sac), and testes of unusual size (tous), three previously uncharacterized genes in Drosophila that are predicted to be components of the flagellar axoneme. Using Drosophila, we demonstrate that these genes are essential for male fertility and that loss of mmm, sac, or tous results in complete immotility of the sperm flagellum. Cytological examination uncovered additional roles for sac and tous during cytokinesis and transmission electron microscopy of developing spermatids in mmm, sac, and tous mutant animals revealed defects associated with mitochondria and the accessory microtubules required for the proper elongation of the mitochondria and flagella during ciliogenesis. This study highlights the complex interactions of cilia-related proteins within the cell body and advances our understanding of male infertility by uncovering novel mitochondrial defects during spermatogenesis.
    Keywords:  Axoneme; Cilia; Dynein; Mitochondria; Nebenkern; Spermatogenesis; Sterile
    DOI:  https://doi.org/10.1016/j.ydbio.2021.11.003
  5. Theriogenology. 2021 Nov 19. pii: S0093-691X(21)00422-2. [Epub ahead of print]179 22-31
      Mitochondria are vital organelles with a multifaceted role in cellular bioenergetics, biosynthesis, signaling and calcium homeostasis. During oxidative phosphorylation, sperm mitochondria generate reactive oxygen species (ROS) at physiological levels mediating signaling pathways essential for sperm fertilizing competence. Moreover, sperm subpopulation with active mitochondria is positively associated with sperm motility, chromatin and plasma membrane integrity, and normal morphology. However, the osmotic and thermal stress, and intracellular ice crystal formation generate excess ROS to cause mitochondrial dysfunction, potentiating cryoprotectant-induced calcium overload in the mitochondrial matrix. It further stimulates the opening of mitochondrial permeability transition pores (mPTP) to release pro-apoptotic factors from mitochondria and initiate apoptotic cascade, with a decrease in Mitochondrial Membrane Potential (MMP) and altered sperm functions. To improve the male reproductive potential, it is essential to address challenges in semen cryopreservation, precisely the deleterious effects of oxidative stress on sperm quality. During semen cryopreservation, the supplementation of extended semen with conventional antioxidants is extensively reported. However, the outcomes of supplementation to improve semen quality are inconclusive across different species, which is chiefly attributed to the unknown bioavailability of antioxidants at the primary site of ROS generation, i.e., mitochondria. Increasing evidence suggests that the targeted delivery of antioxidants to sperm mitochondria is superior in mitigating oxidative stress and improving semen freezability than conventional antioxidants. Therefore, the present review comprehensively describes mitochondrial-targeted antioxidants, their mechanism of action and effects of supplementation on improving semen cryopreservation efficiency in different species. Moreover, it also discusses the significance of active mitochondria in determining sperm fertilizing competence, cryopreservation-induced oxidative stress and mitochondrial dysfunction, and its implications on sperm fertility. The potential of mitochondrial-targeted antioxidants to modulate mitochondrial functions and improve semen quality has been reviewed extensively.
    Keywords:  Apoptosis; Mitochondrial-targeted antioxidants; Oxidative stress; Semen cryopreservation; Sperm fertility
    DOI:  https://doi.org/10.1016/j.theriogenology.2021.11.013
  6. Int J Reprod Biomed. 2021 Oct;19(10): 889-898
       Background: Vitrification as the most efficient method of cryopreservation, enables successful storage of oocytes for couples who undergo specific procedures including surgery and chemotherapy. However, the efficacy of in vitro maturation (IVM) methods with vitrified germinal vesicle (GV) oocytes could be improved.
    Objective: As melatonin and follicular fluid (FF) might enhance IVM conditions, we used these supplements to assess the maturation rate of vitrified GV oocytes and their artificial fertilization rate.
    Materials and Methods: Four hundred mouse GV oocytes were harvested, vitrified, and assigned into control (C-Vit-GV) and treatment groups of melatonin (M-Vit-GV), human follicular fluid (HFF-Vit-GV), and a combination (M + HFF-Vit-GV). A non-vitrified group of GV oocytes (non-Vit-GV) and a group of in vivo matured metaphase II (Vivo-MII) oocytes served as control groups to evaluate the vitrification and IVM conditions, respectively. Maturation of GV oocytes to MII and further development to two-cell-stage embryos were determined in the different groups.
    Results: Development to two-cell embryos was comparable between the Vivo-MII and non-Vit-GV groups. IVM and in vitro fertilization (IVF) results in the non-Vit-GV group were also comparable with the C-Vit-GV oocytes. In addition, the IVM and IVF outcomes were similar across the different treatment groups including the M-Vit-GV, HFF-Vit-GV, M + HFF-Vit-GV, and C-Vit-GV oocytes.
    Conclusion: Employing an appropriate technique of vitrification followed by suitable IVM conditions can lead to reasonable IVF outcomes which may not benefit from extra supplementations. However, whether utilizing other supplementation formulas could improve the outcome requires further investigation.
    Keywords:   Follicular fluid.; Germinal vesicle; In vitro oocyte maturation; Melatonin; Vitrification
    DOI:  https://doi.org/10.18502/ijrm.v19i10.9821
  7. Biochim Biophys Acta Mol Cell Biol Lipids. 2021 Nov 22. pii: S1388-1981(21)00214-6. [Epub ahead of print] 159086
      Lipid droplets (LDs) are common organelles observed in Eucaryota. They are multifunctional organelles (involved in lipid storage, metabolism, and trafficking) that originate from endoplasmic reticulum (ER). LDs consist of a neutral lipid core, made up of diacyl- and triacylglycerols (DAGs and TAGs) and cholesterol esters (CEs), surrounded by a phospholipid monolayer and proteins, which are necessary for their structure and dynamics. Here, we report the protein and lipid composition as well as characterization and dynamics of grass snake (Natrix natrix) skeletal muscle LDs at different developmental stages. In the present study, we used detailed morphometric, LC-MS, quantitative lipidomic analyses of LDs isolated from the skeletal muscles of the snake embryos, immunofluorescence, and TEM. Our study also provides a valuable insight concerning the LDs' multifunctionality and ability to interact with a variety of organelles. These LD features are reflected in their proteome composition, which contains scaffold proteins, metabolic enzymes signalling polypeptides, proteins necessary for the formation of docking sites, and many others. We also provide insights into the biogenesis and growth of muscle LDs goes beyond the conventional mechanism based on the synthesis and incorporation of TAGs and LD fusion. We assume that the formation and functioning of grass snake muscle LDs are based on additional mechanisms that have not yet been identified, which could be related to the unique features of reptiles that are manifested in the after-hatching period of life, such as a reptile-specific strategy for energy saving during hibernation.
    Keywords:  Lipid droplet; Muscle development; Perilipins; Reptile; Skeletal muscle
    DOI:  https://doi.org/10.1016/j.bbalip.2021.159086
  8. Animals (Basel). 2021 Nov 20. pii: 3319. [Epub ahead of print]11(11):
      As the use of assisted reproductive technologies (ART) and in vitro embryo production (IVP) expand in the equine industry, it has become necessary to further our understanding of available semen selection techniques. This segment of our two-section review will focus on the selection of spermatozoa based on quality and sex for equine intracytoplasmic sperm injection (ICSI), as well as current and future developments in sperm sorting technologies. Ultimately, novel methods of semen selection will be assessed based on their efficacy in other species and their relevance and future application towards ARTs in the horse.
    Keywords:  assisted reproductive techniques; fertility; sperm; stallion
    DOI:  https://doi.org/10.3390/ani11113319
  9. Adv Exp Med Biol. 2022 ;1354 109-125
      Water transport during pregnancy is essential for maintaining normal growth and development of conceptuses (embryo/fetus and associated membranes). Aquaporins (AQPs) are a family of small integral plasma membrane proteins that primarily transport water across the plasma membrane. At least 11 isoforms of AQPs (AQPs 1-9, 11, and 12) are differentially expressed in the mammalian placenta (amnion, allantois, and chorion), and organs (kidney, lung, brain, heart, and skin) of embryos/fetuses during prenatal development. Available evidence suggests that the presence of AQPs in the conceptus mediates water movement across the placenta to support the placentation, the homeostasis of amniotic and allantoic fluid volumes, as well as embryonic and fetal survival, growth and development. Abundances of AQPs in the conceptus can be modulated by nutritional status and physiological factors affecting the pregnant female. Here, we summarize the effects of maternal dietary factors (such as intakes of protein, arginine, lipids, all-trans retinoic acid, copper, zinc, and mercury) on the expression of AQPs in the conceptus. We also discuss the physiological changes in hormones (e.g., progesterone and estrogen), oxygen supply, nitric oxide, pH, and osmotic pressure associated with the regulation of fluid exchange between mother and fetus. These findings may help to improve the survival, growth, and development of embryo/fetus in livestock species and other mammals (including humans).
    Keywords:  Aquaporin; Conceptus; Fetal membrane; Nutrition; Placenta; Water transport
    DOI:  https://doi.org/10.1007/978-3-030-85686-1_6
  10. Proc Natl Acad Sci U S A. 2021 Nov 30. pii: e2109993118. [Epub ahead of print]118(48):
      Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na+/H+ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.
    Keywords:  coral; cyclic AMP; pH; reproduction; soluble adenylyl cyclase
    DOI:  https://doi.org/10.1073/pnas.2109993118
  11. Adv Exp Med Biol. 2022 ;1354 1-24
      Consumption of high-quality animal protein plays an important role in improving human nutrition, growth, development, and health. With an exponential growth of the global population, demands for animal-sourced protein are expected to increase by 60% between 2021 and 2050. In addition to the production of food protein and fiber (wool), animals are useful models for biomedical research to prevent and treat human diseases and serve as bioreactors to produce therapeutic proteins. For a high efficiency to transform low-quality feedstuffs and forages into high-quality protein and highly bioavailable essential minerals in diets of humans, farm animals have dietary requirements for energy, amino acids, lipids, carbohydrates, minerals, vitamins, and water in their life cycles. All nutrients interact with each other to influence the growth, development, and health of mammals, birds, fish, and crustaceans, and adequate nutrition is crucial for preventing and treating their metabolic disorders (including metabolic diseases) and infectious diseases. At the organ level, the small intestine is not only the terminal site for nutrient digestion and absorption, but also intimately interacts with a diverse community of intestinal antigens and bacteria to influence gut and whole-body health. Understanding the species and metabolism of intestinal microbes, as well as their interactions with the intestinal immune systems and the host intestinal epithelium can help to mitigate antimicrobial resistance and develop prebiotic and probiotic alternatives to in-feed antibiotics in animal production. As abundant sources of amino acids, bioactive peptides, energy, and highly bioavailable minerals and vitamins, animal by-product feedstuffs are effective for improving the growth, development, health, feed efficiency, and survival of livestock and poultry, as well as companion and aquatic animals. The new knowledge covered in this and related volumes of Adv Exp Med Biol is essential to ensure sufficient provision of animal protein for humans, while helping reduce greenhouse gas emissions, minimize the urinary and fecal excretion of nitrogenous and other wastes to the environment, and sustain animal agriculture (including aquaculture).
    Keywords:  Animal protein; Biomedicine; Diet; Disease; Health; Intestine
    DOI:  https://doi.org/10.1007/978-3-030-85686-1_1
  12. Medicina (Kaunas). 2021 Nov 16. pii: 1251. [Epub ahead of print]57(11):
      A balance within the immune system is necessary for the proper development of ovarian follicles. Numerous cytokines were detected in follicular fluid, the role of which in reproductive physiology seems crucial. They influence the development and maturation of the follicle, ovulation, and corpus luteum formation, as well as embryo implantation and maintenance of pregnancy. The analysis of follicular fluid requires its collection by puncturing of the ovary, which is usually executed in connection with various gynaecological procedures. When interpreting such test results, clinical indications for a given procedure and the method of patient preparation should be taken into account. This review revealed the results of currently available studies on the concentration of pro-inflammatory cytokines in follicular fluid in various forms of infertility. Additionally, it presented cytokines, whose concentration has a significant impact on the size of ovarian follicles, their number, the effectiveness of in vitro fertilisation, development of the embryo, and chances of correct implantation. Despite the many recent publications, the knowledge of follicular fluid immunology in the context of reproductive pathology is superficial and further research is required to extensively understand the roles of individual cytokines in reproductive pathology. In the future, this knowledge may enable patients' individual qualifications to individual methods of infertility treatment, as well as the possible adjustment of the treatment regimen to the patient's immune profile.
    Keywords:  G-CSF; IFN-γ; IL-8; IVF; cytokines; follicular fluid; follicular phase; in vitro fertilisation; infertility
    DOI:  https://doi.org/10.3390/medicina57111251
  13. Iran Biomed J. 2021 Nov 27. pii: A-10-4569-1. [Epub ahead of print]
       Background: A mouse model of LPS-induced inflammation was used to investigate the effect of pharmacological inhibition of nuclear enzyme PARP-1 on oocyte maturation, apoptotic and necrotic death, as well as DNA integrity of follicular cells. Also, the relative expression of cumulus genes (HAS2, COX2, and GREM1) associated with oocyte developmental competence was assessed.
    Methods: Mice were treated with the PARP-1 inhibitor, 4-HQN, one hour before LPS administration. After 24 h, oocyte in vitro maturation was detected. Granulosa cell DNA damage was determined by the alkaline comet assay. Live, necrotic and apoptotic cells were identified using double vital staining by fluorescent dyes, Hoechst 33342 and propidium iodide. The expression levels of cumulus genes were assessed using reverse transcriptase PCR.
    Results: The administration of 4-HQN to LPS-treated mice ameliorated oocyte meiotic maturation and exerted a significant cytoprotective effect. 4-HQN attenuated LPS-induced DNA damage and favored cell survival by decreasing necrosis and apoptosis in granulosa cells. Exposure to 4-HQN increased mRNA expression levels for HAS2, COX2, and GREM1 in cumulus cells.
    Conclusion: The obtained results indicate the involvement of PARP-1 in the pathogenesis of ovarian dysfunction caused by LPS. We suppose that this enzyme can be an attractive target for the therapy of inflammatory disorders in ovary. The protective action of PARP-1 inhibition could at least partly be associated with the reduction of necrotic death of follicular cells and also in other cells. However, the detailed mechanisms of the favorable effect of PARP inhibitors on endotoxin-induced ovarian disorders need to be further explored.
    Keywords:  Cell death; Gene Expression; Lipopolysaccharides; Oocytes; Poly (ADP-ribose) polymerase-1
  14. Adv Exp Med Biol. 2022 ;1354 77-107
      Normal calcium and bone homeostasis in the adult is virtually fully explained by the interactions of several key regulatory hormones, including parathyroid hormone, 1,25 dihydroxy vitamin D3, fibroblast growth factor-23, calcitonin, and sex steroids (estradiol and testosterone). In utero, bone and mineral metabolism is regulated differently from the adult. During development, it is the placenta and not the fetal kidneys, intestines, or skeleton that is the primary source of minerals for the fetus. The placenta is able to meet the almost inexhaustible needs of the fetus for minerals by actively driving the transport of calcium and phosphorus from the maternal circulation to the growing fetus. These fundamentally important minerals are maintained in the fetal circulation at higher concentrations than those in maternal blood. Maintenance of these inordinately higher fetal levels is necessary for the developing skeleton to accrue sufficient minerals by term. Importantly, in livestock species, prenatal mineralization of the skeleton is crucial for the high levels of offspring activity soon after birth. Calcium is required for mineralization, as well as a plethora of other physiological functions. Placental calcium and phosphate transport are regulated by several mechanisms that are discussed in this review. It is clear that phosphate and calcium metabolism is intimately interrelated and, therefore, placental transport of these minerals cannot be considered in isolation.
    Keywords:  Calcium; Endometrium; Phosphate; Placenta; Pregnancy; Vitamin D
    DOI:  https://doi.org/10.1007/978-3-030-85686-1_5
  15. Reprod Domest Anim. 2021 Nov 26.
      Semen cryopreservation is arguably the most important tool contributing to the advancement of modern animal production. However, the quality of sperm after thawing is still highly variable. The addition of antioxidant compounds to the freezing medium has been used customarily to counteract the harmful effects of Reactive Oxygen Species (ROS) that are produced during the freeze/thaw process. Crocin, a potent antioxidant, improves the fertilizing capacity of spermatozoa. In this study, we evaluated the potential of crocin (0, 0.5 and 1mM) as an extender additive to diminish the damaging effects of cryopreservation on bovine spermatozoa. Post-thaw semen quality was assessed by means of motility, viability, and lipid peroxidation (LPO). We further investigated the effect of crocin supplementation upon freezing on sperm quality parameters during their incubation at 37°C for up to 2 hours. Overall, the data assessment indicates that crocin facilitated a general improvement of the quality of freeze/thawed spermatozoa, under the present experimental conditions. Crocin (1mM) maintained a higher percentage of alive spermatozoa with intact acrosome with rapid and progressive motility, compared to the control extender. Moreover, the spermatozoa cryopreserved in the presence of crocin exhibited higher values in CASA kinematic parameters (VCL, VSL, VAP, ALH) immediately after thawing. Furthermore, the positive effect of crocin on motility parameters was also sustained over a period of 2h incubation at 37°C. This effect of crocin may be attributed to the observed inhibition of LPO during the incubation period. Thus, the results indicate that the addition of crocin (especially at a final concentration of 1mM) in the freezing extender medium may benefit the preservation of the quality parameters of spermatozoa that are compromised by the freeze/thaw heat shock and the stress during handling for IVF or Artificial Insemination.
    Keywords:  bovine; crocin; cryopreservation; oxidative stress; spermatozoa
    DOI:  https://doi.org/10.1111/rda.14049
  16. Cells. 2021 Nov 13. pii: 3154. [Epub ahead of print]10(11):
      In this review we discuss the beneficial effects of amino acid transport and metabolism on pre- and peri-implantation embryo development, and we consider how disturbances in these processes lead to undesirable health outcomes in adults. Proline, glutamine, glycine, and methionine transport each foster cleavage-stage development, whereas leucine uptake by blastocysts via transport system B0,+ promotes the development of trophoblast motility and the penetration of the uterine epithelium in mammalian species exhibiting invasive implantation. (Amino acid transport systems and transporters, such as B0,+, are often oddly named. The reader is urged to focus on the transporters' functions, not their names.) B0,+ also accumulates leucine and other amino acids in oocytes of species with noninvasive implantation, thus helping them to produce proteins to support later development. This difference in the timing of the expression of system B0,+ is termed heterochrony-a process employed in evolution. Disturbances in leucine uptake via system B0,+ in blastocysts appear to alter the subsequent development of embryos, fetuses, and placentae, with undesirable consequences for offspring. These consequences may include greater adiposity, cardiovascular dysfunction, hypertension, neural abnormalities, and altered bone growth in adults. Similarly, alterations in amino acid transport and metabolism in pluripotent cells in the blastocyst inner cell mass likely lead to epigenetic DNA and histone modifications that produce unwanted transgenerational health outcomes. Such outcomes might be avoided if we learn more about the mechanisms of these effects.
    Keywords:  amino acid metabolism; amino acid transport; embryo development; epigenetic modifications; offspring
    DOI:  https://doi.org/10.3390/cells10113154
  17. Int J Reprod Biomed. 2021 Oct;19(10): 921-928
       Background: Mouse embryo culture condition is an essential part of transgenic, reproductive and developmental biology laboratories. Mouse embryonic culture media may have a high risk of serum contamination with pathogens.
    Objective: To investigate the effect of sericin as an embryo culture medium supplement on in vitro maturation (IVM), in vitro fertilization (IVF), and development of the preimplantation embryo in mice.
    Materials and Methods: The effects of sericin at three concentrations (subgroups) of 0.1%, 0.5%, and 1% as a medium supplement on IVM, IVF, and in vitro development of mouse embryos were separately investigated and compared with a sericin-free (control) group. The cumulative effect of the three concentrations was evaluated for IVM + in vitro development and IVF + in vitro development as follow-up groups.
    Results: In the IVM group, compared to the control group, the number of oocysts reaching the MII stage was significantly higher when 1% sericin was used (161/208 = 77.4%). No significant results were observed in the IVF and in vitro development groups with different concentrations of sericin compared to the control group. Among the follow-up groups, in the IVM + in vitro development group, the number of oocytes was higher after passing the IVM and IVF and reaching the blastocysts stage when 1% sericin was used, compared with other sericin subgroups. A significant difference was also noted when compared with the control group (p = 0.048). The IVF + in vitro development study group, on the other hand, did not show any significant relationship.
    Conclusion: It can be concluded that 1% sericin can be used as a supplement in mouse embryo cultures to improve the IVM rate. Also, based on the findings, sericin appears to be an effective supplement which can have a positive effect on the development of embryos derived from IVM.
    Keywords:   Culture medium; In vitro fertilization; In vitro maturation; Mice.; Preimplantation embryo; Sericin
    DOI:  https://doi.org/10.18502/ijrm.v19i10.9824
  18. Yi Chuan. 2021 Nov 20. 43(11): 1038-1049
      Eukaryotic cilia and flagella are evolutionarily conserved organelles that protrude from the cell surface. The unique location and properties of cilia allow them to function in vital processes such as motility and signaling. Ciliary assembly and maintenance rely on intraflagellar transport (IFT). Bidirectional movement of IFT particles composed of IFT-A and IFT-B complexes is powered by kinesin-2 and dynein-2 motors. IFT delivers building blocks between their site of synthesis in the cell body and the ciliary assembly site at the tip of the cilium. The integrity of the flagellum, a specialized organelle of mammalian sperm to generate the motility, is critical for normal sperm function. Recent findings suggest that IFT is indispensable for sperm flagellum formation and male fertility in mice and human. In this review, we summarize the role and mechanisms of IFT proteins during enflagellation in spermiogenesis, thereby discussing the pathological mechanisms of male infertility and providing theoretical basis for the diagnosis and treatment of male infertility.
    Keywords:  intraflagellar transport; male infertility; spermiogenesis
    DOI:  https://doi.org/10.16288/j.yczz.21-206
  19. Front Cell Dev Biol. 2021 ;9 762057
      Superovulation is a common approach to maximize the number of eggs available for either clinical assisted reproductive technologies or experimental animal studies. This procedure provides supraphysiological amounts of gonadotropins to promote continued growth and maturation of ovarian follicles that otherwise would undergo atresia. There is evidence in mice, cows, sheep, and humans that superovulation has a detrimental impact on the quality of the resulting ovulated eggs or embryos. Here we tested the hypothesis that eggs derived from superovulation have a reduced capacity to support calcium oscillations, which are a critical factor in the success of embryo development. Eggs were obtained from mice that were either naturally cycling or underwent a standard superovulation protocol. The eggs were either parthenogenetically activated using strontium or fertilized in vitro while undergoing monitoring of calcium oscillatory patterns. Following parthenogenetic activation, superovulated eggs had a slightly delayed onset and longer duration of the first calcium transient, but no differences in oscillation persistence, frequency, or total calcium signal. However, in vitro fertilized superovulated eggs had no differences in any of these measures of calcium oscillatory behavior relative to spontaneously ovulated eggs. These findings indicate that although subtle differences in calcium signaling can be detected following parthenogenetic activation, superovulation does not disrupt physiological calcium signaling at fertilization, supporting the use of this method for both clinical and experimental purposes.
    Keywords:  calcium oscillations; egg activation; mouse; oocyte; superovulation
    DOI:  https://doi.org/10.3389/fcell.2021.762057
  20. Animals (Basel). 2021 Nov 13. pii: 3248. [Epub ahead of print]11(11):
      As the use of assisted reproductive technologies (ART) and in vitro embryo production (IVP) expand in the equine industry, it has become necessary to further our understanding of semen physiology as it applies to overall fertility. This segment of our two-section review will focus on normal sperm parameters, beginning with development and extending through the basic morphology of mature spermatozoa, as well as common issues with male factor infertility in IVP. Ultimately, the relevance of sperm parameters to overall male factor fertility in equine IVP will be assessed.
    Keywords:  assisted reproductive techniques; fertility; sperm; stallion
    DOI:  https://doi.org/10.3390/ani11113248