bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2024–05–26
25 papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi. 2024 May;40(5): 472-478
      Tumor-associated macrophages (TAM) can be differentiated into M1-type and M2-type macrophage phenotypes in the tumor microenvironment (TME), with M2-type macrophages playing a crucial role in malignant tumors. In cervical cancer, TAM exacerbates human papilloma virus (HPV) infection, promotes the proliferation, invasion, and metastasis of tumor cells, stimulates angiogenesis, and induces immune tolerance. TAM targeting strategies have emerged as a hot topic in cervical cancer immunotherapy.
  2. Int J Mol Sci. 2024 May 13. pii: 5288. [Epub ahead of print]25(10):
      Cancer cells adeptly manipulate their metabolic processes to evade immune detection, a phenomenon intensifying the complexity of cancer progression and therapy. This review delves into the critical role of cancer cell metabolism in the immune-editing landscape, highlighting how metabolic reprogramming facilitates tumor cells to thrive despite immune surveillance pressures. We explore the dynamic interactions within the tumor microenvironment (TME), where cancer cells not only accelerate their glucose and amino acid metabolism but also induce an immunosuppressive state that hampers effective immune response. Recent findings underscore the metabolic competition between tumor and immune cells, particularly focusing on how this interaction influences the efficacy of emerging immunotherapies. By integrating cutting-edge research on the metabolic pathways of cancer cells, such as the Warburg effect and glutamine addiction, we shed light on potential therapeutic targets. The review proposes that disrupting these metabolic pathways could enhance the response to immunotherapy, offering a dual-pronged strategy to combat tumor growth and immune evasion.
    Keywords:  cancer; immune escape; immune surveillance; metabolism; progression
    DOI:  https://doi.org/10.3390/ijms25105288
  3. Aging (Albany NY). 2024 May 23. 16
      Currently, antitumor drugs show limited clinical outcomes, mainly due to adaptive resistance. Clinical evidence has highlighted the importance of the tumor microenvironment (TME) and tumor-associated macrophages (TAMs) in tumor response to conventional antitumor drugs. Preclinical studies show that TAMs following antitumor agent can be reprogrammed to an immunosuppressive phenotype and proangiogenic activities through different mechanisms, mediating drug resistance and poor prognosis. Potential extrinsic inhibitors targeting TAMs repolarize to an M1-like phenotype or downregulate proangiogenic function, enhancing therapeutic efficacy of anti-tumor therapy. Moreover, pharmacological modulation of macrophages that restore the immune stimulatory characteristics is useful to reshaping the tumor microenvironment, thus further limiting tumor growth. This review aims to introduce macrophage response in tumor therapy and provide a potential therapeutic combination strategy of TAM-targeting immunomodulation with conventional antitumor drugs.
    Keywords:  cancer; drug resistance; immunotherapy; tumor microenvironment; tumor-associated macrophages
    DOI:  https://doi.org/10.18632/aging.205858
  4. Int Rev Cell Mol Biol. 2024 ;pii: S1937-6448(24)00016-9. [Epub ahead of print]386 223-247
      Mitochondria play an important and multifaceted role in cellular function, catering to the cell's energy and biosynthetic requirements. They modulate apoptosis while responding to diverse extracellular and intracellular stresses including reactive oxygen species (ROS), nutrient and oxygen scarcity, endoplasmic reticulum stress, and signaling via surface death receptors. Integral components of mitochondria, such as mitochondrial DNA (mtDNA), mitochondrial RNA (mtRNA), Adenosine triphosphate (ATP), cardiolipin, and formyl peptides serve as major damage-associated molecular patterns (DAMPs). These molecules activate multiple innate immune pathways both in the cytosol [such as Retionoic Acid-Inducible Gene-1 (RIG-1) and Cyclic GMP-AMP Synthase (cGAS)] and on the cell surface [including Toll-like receptors (TLRs)]. This activation cascade leads to the release of various cytokines, chemokines, interferons, and other inflammatory molecules and oxidative species. The innate immune pathways further induce chronic inflammation in the tumor microenvironment which either promotes survival and proliferation or promotes epithelial to mesenchymal transition (EMT), metastasis and therapeutic resistance in the cancer cell's. Chronic activation of innate inflammatory pathways in tumors also drives immunosuppressive checkpoint expression in the cancer cells and boosts the influx of immune-suppressive populations like Myeloid-Derived Suppressor Cells (MDSCs) and Regulatory T cells (Tregs) in cancer. Thus, sensing of cellular stress by the mitochondria may lead to enhanced tumor growth. In addition to that, the tumor microenvironment also becomes a source of immunosuppressive cytokines. These cytokines exert a debilitating effect on the functioning of immune effector cells, and thus foster immune tolerance and facilitate immune evasion. Here we describe how alteration of the mitochondrial homeostasis and cellular stress drives innate inflammatory pathways in the tumor microenvironment.
    Keywords:  ATP; CGAS; Cardiolipin; Formyl peptides; IFNs; IRF3; Innate immune signaling; MOMP; Mitochondrial DAMPs; MtDNA; MtRNA; NFκB; NLRP3; NLRP3 inflammasome; RIG-1; ROS; STAT3; TLR9
    DOI:  https://doi.org/10.1016/bs.ircmb.2024.01.006
  5. World J Gastrointest Oncol. 2024 May 15. 16(5): 1690-1704
      Severe immunosuppression is a hallmark of colorectal cancer (CRC). Myeloid-derived suppressor cells (MDSCs), one of the most abundant components of the tumor stroma, play an important role in the invasion, metastasis, and immune escape of CRC. MDSCs create an immunosuppressive microenvironment by inhibiting the proliferation and activation of immunoreactive cells, including T and natural killer cells, as well as by inducing the proliferation of immunosuppressive cells, such as regulatory T cells and tumor-associated macrophages, which, in turn, promote the growth of cancer cells. Thus, MDSCs are key contributors to the emergence of an immunosuppressive microenvironment in CRC and play an important role in the breakdown of antitumor immunity. In this narrative review, we explore the mechanisms through which MDSCs contribute to the immunosuppressive microenvironment, the current therapeutic approaches and technologies targeting MDSCs, and the therapeutic potential of modulating MDSCs in CRC treatment. This study provides ideas and methods to enhance survival rates in patients with CRC.
    Keywords:  Colorectal cancer; Immunosuppression; Myeloid-derived suppressor cells; Therapy; Tumor microenvironment
    DOI:  https://doi.org/10.4251/wjgo.v16.i5.1690
  6. Front Immunol. 2024 ;15 1397005
      As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.
    Keywords:  immunomodulation; leukemia; lymphoma; macrophage; mesenchymal stem cells; myeloma; tumor microenvironment
    DOI:  https://doi.org/10.3389/fimmu.2024.1397005
  7. Pharmacol Ther. 2024 May 17. pii: S0163-7258(24)00087-1. [Epub ahead of print] 108667
      This review critically examines the evolving landscape of chimeric antigen receptor (CAR) T-cell therapy in treating solid tumors, with a particular focus on the metabolic challenges within the tumor microenvironment. CAR T-cell therapy has demonstrated remarkable success in hematologic malignancies, yet its efficacy in solid tumors remains limited. A significant barrier is the hostile milieu of the tumor microenvironment, which impairs CAR T-cell survival and function. This review delves into the metabolic adaptations of cancer cells and their impact on immune cells, highlighting the competition for nutrients and the accumulation of immunosuppressive metabolites. It also explores emerging strategies to enhance CAR T-cell metabolic fitness and persistence, including genetic engineering and metabolic reprogramming. An integrated approach, combining metabolic interventions with CAR T-cell therapy, has the potential to overcome these constraints and improve therapeutic outcomes in solid tumors.
    Keywords:  CAR T-cell therapy; CRISPR Cas systems; Immunotherapy; Metabolism; Solid tumors; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.pharmthera.2024.108667
  8. Adv Protein Chem Struct Biol. 2024 ;pii: S1876-1623(24)00013-0. [Epub ahead of print]140 249-292
      Cancer is no longer recognized as a single disease but a collection of diseases each with its defining characteristics and behavior. Even within the same cancer type, there can be substantial heterogeneity at the molecular level. Cancer cells often accumulate various genetic mutations and epigenetic alterations over time, leading to a coexistence of distinct subpopulations of cells within the tumor. This tumor heterogeneity arises not only due to clonal outgrowth of cells with genetic mutations, but also due to interactions of tumor cells with the tumor microenvironment (TME). The latter is a dynamic ecosystem that includes cancer cells, immune cells, fibroblasts, endothelial cells, stromal cells, blood vessels, and extracellular matrix components, tumor-associated macrophages and secreted molecules. The complex interplay between tumor heterogeneity and the TME makes it difficult to develop one-size-fits-all treatments and is often the cause of therapeutic failure and resistance in solid cancers. Technological advances in the post-genomic era have given us cues regarding spatial and temporal tumor heterogeneity. Armed with this knowledge, oncologists are trying to target the unique genomic, epigenetic, and molecular landscape in the tumor cell that causes its oncogenic transformation in a particular patient. This has ushered in the era of personalized precision medicine (PPM). Immunotherapy, on the other hand, involves leveraging the body's immune system to recognize and attack cancer cells and spare healthy cells from the damage induced by radiation and chemotherapy. Combining PPM and immunotherapy represents a paradigm shift in cancer treatment and has emerged as a promising treatment modality for several solid cancers. In this chapter, we summarise major types of cancer immunotherapy and discuss how they are being used for precision medicine in different solid tumors.
    Keywords:  CAR-T cells; Cancer immunotherapy; Checkpoint inhibitors; Neoantigens; Solid tumors
    DOI:  https://doi.org/10.1016/bs.apcsb.2024.02.004
  9. Heliyon. 2024 May 15. 10(9): e30807
      In the last ten years, there has been a notable rise in the study of metabolic abnormalities in cancer cells. However, compared to glucose or glutamine metabolism, less attention has been paid to the importance of lipid metabolism in tumorigenesis. Recent developments in lipidomics technologies have allowed for detailed analysis of lipid profiles within cancer cells and other cellular players present within the tumor microenvironment (TME). Traditional Chinese medicine (TCM) and its bioactive components have a long history of use in cancer treatments and are also being studied for their potential role in regulating metabolic reprogramming within TME. This review focuses on four core abnormalities altered by lipid reprogramming in cancer cells: de novo synthesis and exogenous uptake of fatty acids (FAs), upregulated fatty acid oxidation (FAO), cholesterol accumulation, which offer benefits for tumor growth and metastasis. The review also discusses how altered lipid metabolism impacts infiltrating immune cell function and phenotype as these interactions between cancer-stromal become more pronounced during tumor progression. Finally, recent literature is highlighted regarding how cancer cells can be metabolically reprogrammed by specific Chinese herbal components with potential therapeutic benefits related to lipid metabolic and signaling pathways.
    Keywords:  Fatty acids; Lipid droplet; Lipid reprogramming; Traditional Chinese medicines; Tumor microenvironment; de novo lipogenesis
    DOI:  https://doi.org/10.1016/j.heliyon.2024.e30807
  10. iScience. 2024 Jun 21. 27(6): 109817
      Although glutamine addiction in cancer cells is extensively reported, there is controversy on the impact of glutamine metabolism on the immune cells within the tumor microenvironment (TME). To address the role of extracellular glutamine, we enzymatically depleted circulating glutamine using PEGylated Helicobacter pylori gamma-glutamyl transferase (PEG-GGT) in syngeneic mouse models of breast and colon cancers. PEG-GGT treatment inhibits growth of cancer cells in vitro, but in vivo it increases myeloid-derived suppressor cells (MDSCs) and has no significant impact on tumor growth. By deriving a glutamine depletion signature, we analyze diverse human cancers within the TCGA and illustrate that glutamine depletion is not associated with favorable clinical outcomes and correlates with accumulation of MDSC. Broadly, our results help clarify the integrated impact of glutamine depletion within the TME and advance PEG-GGT as an enzymatic tool for the systemic and selective depletion (no asparaginase activity) of circulating glutamine in live animals.
    Keywords:  Cancer; Immunity; Molecular biology
    DOI:  https://doi.org/10.1016/j.isci.2024.109817
  11. Cancer Biol Ther. 2024 Dec 31. 25(1): 2356831
      The tumor microenvironment (TME) plays an essential role in tumor cell survival by profoundly influencing their proliferation, metastasis, immune evasion, and resistance to treatment. Extracellular vesicles (EVs) are small particles released by all cell types and often reflect the state of their parental cells and modulate other cells' functions through the various cargo they transport. Tumor-derived small EVs (TDSEVs) can transport specific proteins, nucleic acids and lipids tailored to propagate tumor signals and establish a favorable TME. Thus, the TME's biological characteristics can affect TDSEV heterogeneity, and this interplay can amplify tumor growth, dissemination, and resistance to therapy. This review discusses the interplay between TME and TDSEVs based on their biological characteristics and summarizes strategies for targeting cancer cells. Additionally, it reviews the current issues and challenges in this field to offer fresh insights into comprehending tumor development mechanisms and exploring innovative clinical applications.
    Keywords:  Tumor microenvironment; acidic microenvironment; hypoxic microenvironment; immunosuppressive microenvironment; targeted therapy; tumor-derived small extracellular vesicles
    DOI:  https://doi.org/10.1080/15384047.2024.2356831
  12. Clin Cancer Res. 2024 May 21.
      Over the past decade, cancer immunotherapy has significantly advanced through the introduction of immune checkpoint inhibitors, and the augmentation of adoptive cell transfer to enhance the innate cancer defense mechanisms. Despite these remarkable achievements, some cancers exhibit resistance to immunotherapy, with limited patient responsiveness and development of therapy resistance. Metabolic adaptations in both immune cells and cancer cells have emerged as central contributors to immunotherapy resistance. In the last few years, new insights emphasized the critical role of cancer and immune cell metabolism in animal models and patients. During therapy, immune cells undergo important metabolic shifts crucial for their acquired effector function against cancer cells. However, cancer cell metabolic rewiring and nutrient competition within tumor microenvironment (TME) alters many immune functions, affecting their fitness, polarization, recruitment, and survival. These interactions have initiated the development of novel therapies targeting tumor cell metabolism and favoring anti-tumor immunity within the TME. Furthermore, there has been increasing interest in comprehending how diet impacts the response to immunotherapy, given the demonstrated immunomodulatory and anti-tumor activity of various nutrients. In conclusion, recent advances in preclinical and clinical studies have highlighted the capacity of immune-based cancer therapies. Therefore, further exploration into the metabolic requirements of immune cells within the TME holds significant promise for the development of innovative therapeutical approaches that can effectively combat cancer in patients.
    DOI:  https://doi.org/10.1158/1078-0432.CCR-22-3468
  13. Molecules. 2024 May 17. pii: 2374. [Epub ahead of print]29(10):
      The tumor microenvironment (TME) can aid tumor cells in evading surveillance and clearance by immune cells, creating an internal environment conducive to tumor cell growth. Consequently, there is a growing focus on researching anti-tumor immunity through the regulation of immune cells within the TME. Various bioactive compounds in traditional Chinese medicine (TCM) are known to alter the immune balance by modulating the activity of immune cells in the TME. In turn, this enhances the body's immune response, thus promoting the effective elimination of tumor cells. This study aims to consolidate recent findings on the regulatory effects of bioactive compounds from TCM on immune cells within the TME. The bioactive compounds of TCM regulate the TME by modulating macrophages, dendritic cells, natural killer cells and T lymphocytes and their immune checkpoints. TCM has a long history of having been used in clinical practice in China. Chinese medicine contains various chemical constituents, including alkaloids, polysaccharides, saponins and flavonoids. These components activate various immune cells, thereby improving systemic functions and maintaining overall health. In this review, recent progress in relation to bioactive compounds derived from TCM will be covered, including TCM alkaloids, polysaccharides, saponins and flavonoids. This study provides a basis for further in-depth research and development in the field of anti-tumor immunomodulation using bioactive compounds from TCM.
    Keywords:  Chinese medicine; bioactive compound; immune cell; immune checkpoint; immunotherapy; tumor microenvironment
    DOI:  https://doi.org/10.3390/molecules29102374
  14. Cancer Lett. 2024 May 16. pii: S0304-3835(24)00357-4. [Epub ahead of print] 216964
      Tumor-associated macrophages (TAMs) are important components of the tumor microenvironment (TME) and strongly associated with poor prognosis and drug resistance, including checkpoint blockade immunotherapy in solid tumor patients. However, the mechanism by which TAM affects immune metabolism reprogramming and immune checkpoint signalling pathway in the TME remains elusive. In this study we found that transforming growth factor-beta (TGF-β) secreted by M2-TAMs increased the level of glycolysis in bladder cancer (BLCA) and played important role in PD-L1-mediated immune evasion through pyruvate kinase isoenzymes M2 (PKM2). Mechanistically, TGF-β promoted high expression of PKM2 by promoting the nuclear translocation of PKM2 dimer in conjunction with phosphorylated signal transducer and activator of transcription (p-STAT3), which then exerted its kinase activity to promote PD-L1 expression in BLCA. Moreover, SB-431542 (TGF-β blocker) and shikonin (PKM2 inhibitor) significantly reduced PD-L1 expression and inhibited BLCA growth and organoids by enhancing anti-tumour immune responses. In conclusion, M2-TAM-derived TGF-β promotes PD-L1-mediated immune evasion in BLCA by increasing the PKM2 dimer-STAT3 complex nuclear translocation. Combined blockade of the TGF-β receptor and inhibition of PKM2 effectively prevent BLCA progression and immunosuppression, providing a potential targeted therapeutic strategy for BLCA.
    Keywords:  Bladder cancer; Combination immunotherapy; PD-L1; TGF-β; Tumor-associated macrophage
    DOI:  https://doi.org/10.1016/j.canlet.2024.216964
  15. Cells. 2024 May 07. pii: 796. [Epub ahead of print]13(10):
      A heterogenous population of inflammatory elements, other immune and nonimmune cells and cancer-associated fibroblasts (CAFs) are evident in solid malignancies where they coexist with the growing tumor mass. In highly desmoplastic malignancies, CAFs are the prominent mesenchymal cell type in the tumor microenvironment (TME), where their presence and abundance signal a poor prognosis. CAFs play a major role in the progression of various cancers by remodeling the supporting stroma into a dense, fibrotic matrix while secreting factors that promote the maintenance of cancer stem-like characteristics, tumor cell survival, aggressive growth and metastasis and reduced sensitivity to chemotherapeutics. Tumors with high stromal fibrotic signatures are more likely to be associated with drug resistance and eventual relapse. Identifying the molecular underpinnings for such multidirectional crosstalk among the various normal and neoplastic cell types in the TME may provide new targets and novel opportunities for therapeutic intervention. This review highlights recent concepts regarding the complexity of CAF biology in cholangiocarcinoma, a highly desmoplastic cancer. The discussion focuses on CAF heterogeneity, functionality in drug resistance, contributions to a progressively fibrotic tumor stroma, the involved signaling pathways and the participating genes.
    Keywords:  SERPINE1; cancer-associated fibroblasts; cell signaling; cholangiocarcinoma; extracellular matrix; p53; plasminogen activator inhibitor-1; tumor microenvironment; tumor progression
    DOI:  https://doi.org/10.3390/cells13100796
  16. Pharmaceutics. 2024 May 09. pii: 636. [Epub ahead of print]16(5):
      Cancer remains a significant challenge for public healthcare systems worldwide. Within the realm of cancer treatment, considerable attention is focused on understanding the tumor microenvironment (TME)-the complex network of non-cancerous elements surrounding the tumor. Among the cells in TME, tumor-associated macrophages (TAMs) play a central role, traditionally categorized as pro-inflammatory M1 macrophages or anti-inflammatory M2 macrophages. Within the TME, M2-like TAMs can create a protective environment conducive to tumor growth and progression. These TAMs secrete a range of factors and molecules that facilitate tumor angiogenesis, increased vascular permeability, chemoresistance, and metastasis. In response to this challenge, efforts are underway to develop adjuvant therapy options aimed at reprogramming TAMs from the M2 to the anti-tumor M1 phenotype. Such reprogramming holds promise for suppressing tumor growth, alleviating chemoresistance, and impeding metastasis. Nanotechnology has enabled the development of nanoformulations that may soon offer healthcare providers the tools to achieve targeted drug delivery, controlled drug release within the TME for TAM reprogramming and reduce drug-related adverse events. In this review, we have synthesized the latest data on TAM polarization in response to TME factors, highlighted the pathological effects of TAMs, and provided insights into existing nanotechnologies aimed at TAM reprogramming and depletion.
    Keywords:  M2 macrophage; chemotherapy resistance; macrophage repolarization; nanotherapy; tumor-associated macrophage
    DOI:  https://doi.org/10.3390/pharmaceutics16050636
  17. Gene. 2024 May 22. pii: S0378-1119(24)00482-7. [Epub ahead of print] 148601
      Tumor-derived exosomes (TDEs), as topologies of tumor cells, not only carry biological information from the mother, but also act as messengers for cellular communication. It has been demonstrated that TDEs play a key role in inducing an immunosuppressive tumor microenvironment (TME). They can reprogram immune cells indirectly or directly by delivering inhibitory proteins, cytokines, RNA and other substances. They not only inhibit the maturation and function of dendritic cells (DCs) and natural killer (NK) cells, but also remodel M2 macrophages and inhibit T cell infiltration to promote immunosuppression and create a favorable ecological niche for tumor growth, invasion and metastasis. Based on the specificity of TDEs, targeting TDEs has become a new strategy to monitor tumor progression and enhance treatment efficacy. This paper reviews the intricate molecular mechanisms underlying the immunosuppressive effects induced by TDEs to establish a theoretical foundation for cancer therapy. Additionally, the challenges of TDEs as a novel approach to tumor treatment are discussed.
    Keywords:  Dendritic cells; Immunosuppressive; Macrophage; Natural killer cells; T cells; Tumor-derived exosomes
    DOI:  https://doi.org/10.1016/j.gene.2024.148601
  18. Int J Mol Sci. 2024 May 07. pii: 5072. [Epub ahead of print]25(10):
      Vascular co-option is a consequence of the direct interaction between perivascular cells, known as pericytes (PCs), and glioblastoma multiforme (GBM) cells (GBMcs). This process is essential for inducing changes in the pericytes' anti-tumoral and immunoreactive phenotypes. Starting from the initial stages of carcinogenesis in GBM, PCs conditioned by GBMcs undergo proliferation, acquire a pro-tumoral and immunosuppressive phenotype by expressing and secreting immunosuppressive molecules, and significantly hinder the activation of T cells, thereby facilitating tumor growth. Inhibiting the pericyte (PC) conditioning mechanisms in the GBM tumor microenvironment (TME) results in immunological activation and tumor disappearance. This underscores the pivotal role of PCs as a key cell in the TME, responsible for tumor-induced immunosuppression and enabling GBM cells to evade the immune system. Other cells within the TME, such as tumor-associated macrophages (TAMs) and microglia, have also been identified as contributors to this immunomodulation. In this paper, we will review the role of these three cell types in the immunosuppressive properties of the TME. Our conclusion is that the cellular heterogeneity of immunocompetent cells within the TME may lead to the misinterpretation of cellular lineage identification due to different reactive stages and the identification of PCs as TAMs. Consequently, novel therapies could be developed to disrupt GBM-PC interactions and/or PC conditioning through vascular co-option, thereby exposing GBMcs to the immune system.
    Keywords:  glioma immunotolerance; perivascular cells; tumor microenvironment; vascular co-option
    DOI:  https://doi.org/10.3390/ijms25105072
  19. Cell Death Discov. 2024 May 18. 10(1): 237
      Immunotherapy has now garnered significant attention as an essential component in cancer therapy during this new era. However, due to immune tolerance, immunosuppressive environment, tumor heterogeneity, immune escape, and other factors, the efficacy of tumor immunotherapy has been limited with its application to very small population size. Energy metabolism not only affects tumor progression but also plays a crucial role in immune escape. Tumor cells are more metabolically active and need more energy and nutrients to maintain their growth, which causes the surrounding immune cells to lack glucose, oxygen, and other nutrients, with the result of decreased immune cell activity and increased immunosuppressive cells. On the other hand, immune cells need to utilize multiple metabolic pathways, for instance, cellular respiration, and oxidative phosphorylation pathways to maintain their activity and normal function. Studies have shown that there is a significant difference in the energy expenditure of immune cells in the resting and activated states. Notably, competitive uptake of glucose is the main cause of impaired T cell function. Conversely, glutamine competition often affects the activation of most immune cells and the transformation of CD4+T cells into inflammatory subtypes. Excessive metabolite lactate often impairs the function of NK cells. Furthermore, the metabolite PGE2 also often inhibits the immune response by inhibiting Th1 differentiation, B cell function, and T cell activation. Additionally, the transformation of tumor-suppressive M1 macrophages into cancer-promoting M2 macrophages is influenced by energy metabolism. Therefore, energy metabolism is a vital factor and component involved in the reconstruction of the tumor immune microenvironment. Noteworthy and vital is that not only does the metabolic program of tumor cells affect the antigen presentation and recognition of immune cells, but also the metabolic program of immune cells affects their own functions, ultimately leading to changes in tumor immune function. Metabolic intervention can not only improve the response of immune cells to tumors, but also increase the immunogenicity of tumors, thereby expanding the population who benefit from immunotherapy. Consequently, identifying metabolic crosstalk molecules that link tumor energy metabolism and immune microenvironment would be a promising anti-tumor immune strategy. AMPK (AMP-activated protein kinase) is a ubiquitous serine/threonine kinase in eukaryotes, serving as the central regulator of metabolic pathways. The sequential activation of AMPK and its associated signaling cascades profoundly impacts the dynamic alterations in tumor cell bioenergetics. By modulating energy metabolism and inflammatory responses, AMPK exerts significant influence on tumor cell development, while also playing a pivotal role in tumor immunotherapy by regulating immune cell activity and function. Furthermore, AMPK-mediated inflammatory response facilitates the recruitment of immune cells to the tumor microenvironment (TIME), thereby impeding tumorigenesis, progression, and metastasis. AMPK, as the link between cell energy homeostasis, tumor bioenergetics, and anti-tumor immunity, will have a significant impact on the treatment and management of oncology patients. That being summarized, the main objective of this review is to pinpoint the efficacy of tumor immunotherapy by regulating the energy metabolism of the tumor immune microenvironment and to provide guidance for the development of new immunotherapy strategies.
    DOI:  https://doi.org/10.1038/s41420-024-02011-5
  20. Discov Oncol. 2024 May 18. 15(1): 173
      Cellular proliferation, function and survival is reliant upon maintaining appropriate intracellular polyamine levels. Due to increased metabolic needs, cancer cells elevate their polyamine pools through coordinated metabolism and uptake. High levels of polyamines have been linked to more immunosuppressive tumor microenvironments (TME) as polyamines support the growth and function of many immunosuppressive cell types such as MDSCs, macrophages and regulatory T-cells. As cancer cells and other pro-tumorigenic cell types are highly dependent on polyamines for survival, pharmacological modulation of polyamine metabolism is a promising cancer therapeutic strategy. This review covers the roles of polyamines in various cell types of the TME including both immune and stromal cells, as well as how competition for nutrients, namely polyamine precursors, influences the cellular landscape of the TME. It also details the use of polyamines as biomarkers and the ways in which polyamine depletion can increase the immunogenicity of the TME and reprogram tumors to become more responsive to immunotherapy.
    Keywords:  Amino acid metabolism; Immunotherapy; Polyamine; Tumor microenvironment
    DOI:  https://doi.org/10.1007/s12672-024-01034-9
  21. Cells. 2024 May 17. pii: 864. [Epub ahead of print]13(10):
      Innovations in cancer immunotherapy have resulted in the development of several novel immunotherapeutic strategies that can disrupt immunosuppression. One key advancement lies in immune checkpoint inhibitors (ICIs), which have shown significant clinical efficacy and increased survival rates in patients with various therapy-resistant cancers. This immune intervention consists of monoclonal antibodies directed against inhibitory receptors (e.g., PD-1) on cytotoxic CD8 T cells or against corresponding ligands (e.g., PD-L1/PD-L2) overexpressed on cancer cells and other cells in the tumor microenvironment (TME). However, not all cancer cells respond-there are still poor clinical responses, immune-related adverse effects, adaptive resistance, and vulnerability to ICIs in a subset of patients with cancer. This challenge showcases the heterogeneity of cancer, emphasizing the existence of additional immunoregulatory mechanisms in many patients. Therefore, it is essential to investigate PD-L1's interaction with other oncogenic genes and pathways to further advance targeted therapies and address resistance mechanisms. Accordingly, our aim was to investigate the mechanisms governing PD-L1 expression in tumor cells, given its correlation with immune evasion, to uncover novel mechanisms for decreasing PD-L1 expression and restoring anti-tumor immune responses. Numerous studies have demonstrated that the upregulation of Raf Kinase Inhibitor Protein (RKIP) in many cancers contributes to the suppression of key hyperactive pathways observed in malignant cells, alongside its broadening involvement in immune responses and the modulation of the TME. We, therefore, hypothesized that the role of PD-L1 in cancer immune surveillance may be inversely correlated with the low expression level of the tumor suppressor Raf Kinase Inhibitor Protein (RKIP) expression in cancer cells. This hypothesis was investigated and we found several signaling cross-talk pathways between the regulations of both RKIP and PD-L1 expressions. These pathways and regulatory factors include the MAPK and JAK/STAT pathways, GSK3β, cytokines IFN-γ and IL-1β, Sox2, and transcription factors YY1 and NFκB. The pathways that upregulated PD-L1 were inhibitory for RKIP expression and vice versa. Bioinformatic analyses in various human cancers demonstrated the inverse relationship between PD-L1 and RKIP expressions and their prognostic roles. Therefore, we suspect that the direct upregulation of RKIP and/or the use of targeted RKIP inducers in combination with ICIs could result in a more targeted anti-tumor immune response-addressing the therapeutic challenges related to PD-1/PD-L1 monotherapy alone.
    Keywords:  PD-L1; RKIP; cancer; cross-talk; immune evasion; targeted therapy
    DOI:  https://doi.org/10.3390/cells13100864
  22. Med Oncol. 2024 May 18. 41(6): 159
      RNA modification has garnered increasing attention in recent years due to its pivotal role in tumorigenesis and immune surveillance. N6-methyladenosine (m6A) modification is the most prevalent RNA modification, which can affect the expression of RNA by methylating adenylate at the sixth N position to regulate the occurrence and development of tumors. Dysregulation of m6A affects the activation of cancer-promoting pathways, destroys immune cell function, maintains immunosuppressive microenvironment, and promotes tumor cell growth. In this review, we delve into the latest insights into how abnormalities in m6A modification in both tumor and immune cells orchestrate immune evasion through the activation of signaling pathways. Furthermore, we explore how dysregulated m6A modification in tumor cells influences immune cells, thereby regulating tumor immune evasion via interactions within the tumor microenvironment (TME). Lastly, we highlight recent discoveries regarding specific inhibitors of m6A modulators and the encapsulation of m6A-targeting nanomaterials for cancer therapy, discussing their potential applications in immunotherapy.
    Keywords:  Immune evasion; Immunotherapy; N6-methyladenosine; Signaling pathways
    DOI:  https://doi.org/10.1007/s12032-024-02402-9
  23. Cancers (Basel). 2024 May 08. pii: 1794. [Epub ahead of print]16(10):
      Angiogenesis plays a pivotal role in tumor progression, particularly in melanoma, the deadliest form of skin cancer. This review synthesizes current knowledge on the intricate interplay between angiogenesis and tumor microenvironment (TME) in melanoma progression. Pro-angiogenic factors, including VEGF, PlGF, FGF-2, IL-8, Ang, TGF-β, PDGF, integrins, MMPs, and PAF, modulate angiogenesis and contribute to melanoma metastasis. Additionally, cells within the TME, such as cancer-associated fibroblasts, mast cells, and melanoma-associated macrophages, influence tumor angiogenesis and progression. Anti-angiogenic therapies, while showing promise, face challenges such as drug resistance and tumor-induced activation of alternative angiogenic pathways. Rational combinations of anti-angiogenic agents and immunotherapies are being explored to overcome resistance. Biomarker identification for treatment response remains crucial for personalized therapies. This review highlights the complexity of angiogenesis in melanoma and underscores the need for innovative therapeutic approaches tailored to the dynamic TME.
    Keywords:  angiogenesis; anti-angiogenesis; melanoma; metastasis; tumor progression
    DOI:  https://doi.org/10.3390/cancers16101794
  24. Expert Opin Biol Ther. 2024 May 23. 1-13
       INTRODUCTION: There is a need for new therapies that can enhance response rates and broaden the number of cancer indications where immunotherapies provide clinical benefit. CD40 targeting therapies provide an opportunity to meet this need by promoting priming of tumor-specific T cells and reverting the suppressive tumor microenvironment. This is supported by emerging clinical evidence demonstrating the benefits of immunotherapy with CD40 antibodies in combination with standard of care chemotherapy.
    AREAS COVERED: This review is focused on the coming wave of next-generation CD40 agonists aiming to improve efficacy and safety, using new approaches and formats beyond monospecific antibodies. Further, the current understanding of the role of different CD40 expressing immune cell populations in the tumor microenvironment is reviewed.
    EXPERT OPINION: There are multiple promising next-generation approaches beyond monospecific antibodies targeting CD40 in immuno-oncology. Enhancing efficacy is the most important driver for this development, and approaches that maximize the ability of CD40 to both remodel the tumor microenvironment and boost the anti-tumor T cell response provide great opportunities to benefit cancer patients. Enhanced understanding of the role of different CD40 expressing immune cells in the tumor microenvironment may facilitate more efficient clinical development of these compounds.
    Keywords:  Antibodies; CD40; antigen-presenting cells; bispecific antibodies; immuno-oncology; tumor-associated antigens
    DOI:  https://doi.org/10.1080/14712598.2024.2357714
  25. Biochem Biophys Res Commun. 2024 May 18. pii: S0006-291X(24)00678-8. [Epub ahead of print]720 150142
      The role of extracellular matrix (ECM) prevalent in the brain metastatic breast cancer (BMBC) niche in mediating cancer cell growth, survival, and response to therapeutic agents is not well understood. Emerging evidence suggests a vital role of ECM of the primary breast tumor microenvironment (TME) in tumor progression and survival. Possibly, the BMBC cells are also similarly influenced by the ECM of the metastatic niche; therefore, understanding the effect of the metastatic ECM on BMBC cells is imperative. Herein, we assessed the impact of various ECM components (i.e., Tenascin C, Laminin I, Collagen I, Collagen IV, and Fibronectin) on brain metastatic human epidermal growth factor receptor 2 (HER2)-positive and triple negative breast cancer (TNBC) cell lines in vitro. The highly aggressive TNBC cell line was minimally affected by ECM components exhibiting no remarkable changes in viability and morphology. On the contrary, amongst various ECM components tested, the HER2-positive cell line was significantly affected by Laminin I with higher viability and demonstrated a distinct spread morphology. In addition, HER2-positive BMBC cells exhibited resistance to Lapatinib in presence of Laminin I. Mechanistically, Laminin I-induced resistance to Lapatinib was mediated in part by phosphorylation of Erk 1/2 and elevated levels of Vimentin. Laminin I also significantly enhanced the migratory potential and replicative viability of HER2-positive BMBC cells. In sum, our findings show that presence of Laminin I in the TME of BMBC cells imparts resistance to targeted therapeutic agent Lapatinib, while increasing the possibility of its dispersal and clonogenic survival.
    Keywords:  Brain metastatic breast cancer; Extracellular matrix; HER2; Laminin I
    DOI:  https://doi.org/10.1016/j.bbrc.2024.150142