bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2024‒03‒24
29 papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Int J Cancer. 2024 Mar 18.
      Tumor-associated myeloid cells (TAMCs) play a crucial role in orchestrating the dynamics of the tumor immune microenvironment. This heterogeneous population encompasses myeloid-derived suppressor cells, tumor-associated macrophages and dendritic cells, all of which contribute to the establishment of an immunosuppressive milieu that fosters tumor progression. Tumor-derived exosomes (TEXs), small extracellular vesicles secreted by tumor cells, have emerged as central mediators in intercellular communication within the tumor microenvironment. In this comprehensive review, we explore the intricate mechanisms through which TEXs modulate immune-suppressive effects on TAMCs and their profound implications in cancer progression. We delve into the multifaceted ways in which TEXs influence TAMC functions, subsequently affecting tumor immune evasion. Furthermore, we elucidate various therapeutic strategies aimed at targeting TEX-mediated immune suppression, with the ultimate goal of bolstering antitumor immunity.
    Keywords:  immunosuppression; tumor microenvironment; tumor-associated myeloid cells; tumor-derived exosomes
    DOI:  https://doi.org/10.1002/ijc.34921
  2. Trends Pharmacol Sci. 2024 Mar 16. pii: S0165-6147(24)00045-2. [Epub ahead of print]
      Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
    Keywords:  macrophages; metabolism; tumor
    DOI:  https://doi.org/10.1016/j.tips.2024.02.005
  3. Biochem Pharmacol. 2024 Mar 19. pii: S0006-2952(24)00137-0. [Epub ahead of print]223 116154
      Wnt signaling pathways are highly conserved cascades that mediate multiple biological processes through canonical or noncanonical pathways, from embryonic development to tissue maintenance, but they also contribute to the pathogenesis of numerous cancers. Recent studies have revealed that Wnt signaling pathways critically control the interplay between cancer cells and tumor-associated macrophages (TAMs) in the tumor microenvironment (TME) and potentially impact the efficacy of cancer immunotherapy. In this review, we summarize the evidence that Wnt signaling pathways boost the maturation and infiltration of macrophages for immune surveillance in the steady state but also polarize TAMs toward immunosuppressive M2-like phenotypes for immune escape in the TME. Both cancer cells and TAMs utilize Wnt signaling to transmit signals, and this interaction is crucial for the carcinogenesis and progression of common solid cancers, such as colorectal, gastric, hepatocellular, breast, thyroid, prostate, kidney, and lung cancers; osteosarcoma; and glioma. Specifically, compared with those in solid cancers, Wnt signaling pathways play a distinct role in the pathogenesis of leukemia. Efforts to develop Wnt-based drugs for cancer treatment are still ongoing, and some indeed enhance the anticancer immune response. We believe that the combination of Wnt signaling-based therapy with conventional or immune therapies is a promising therapeutic approach and can facilitate personalized treatment for most cancers.
    Keywords:  Cancer immunotherapy; Therapeutic targets; Tumor microenvironment; Tumor-associated macrophages; Wnt signaling pathways
    DOI:  https://doi.org/10.1016/j.bcp.2024.116154
  4. Int J Oncol. 2024 May;pii: 51. [Epub ahead of print]64(5):
      Although annexin A1 (ANXA1), a 37 kDa phospholipid‑binding anti‑inflammatory protein expressed in various tissues and cell types, has been investigated extensively for its regulatory role in cancer biology, studies have mainly focused on its intracellular role. However, cancer cells and stromal cells expressing ANXA1 have the ability to transmit signals within the tumor microenvironment (TME) through autocrine, juxtacrine, or paracrine signaling. This bidirectional crosstalk between cancer cells and their environment is also crucial for cancer progression, contributing to uncontrolled tumor proliferation, invasion, metastasis and resistance to therapy. The present review explored the important role of ANXA1 in regulating the cell‑specific crosstalk between various compartments of the TME and analyzed the guiding significance of the crosstalk effects in promotion or suppressing cancer progression in the development of cancer treatments. The literature shows that ANXA1 is critical for the regulation of the TME, indicating that ANXA1 signaling between cancer cells and the TME is a potential therapeutic target for the development of novel therapeutic approaches for impeding cancer development.
    Keywords:  annexin A1; cancer; formyl peptide receptor; immune response; tumor microenvironment
    DOI:  https://doi.org/10.3892/ijo.2024.5639
  5. Cell Biochem Funct. 2024 Mar;42(2): e3984
      Cancer has become a global public health problem and its harmful effects have received widespread attention. Conventional treatments such as surgical resection, radiotherapy and other techniques are applicable to clinical practice, but new drugs are constantly being developed and other therapeutic approaches, such as immunotherapy are being applied. In addition to studying the effects on individual tumor cells, it is important to explore the role of tumor microenvironment on tumor cell development since tumor cells do not exist alone but in the tumor microenvironment. In the tumor microenvironment, tumor cells are interconnected with other stromal cells and influence each other, among which tumor-associated macrophages (TAMs) are the most numerous immune cells. At the same time, it was found that cancer cells have different levels of autophagy from normal cells. In cancer therapy, the occurrence of autophagy plays an important role in promoting tumor cell death or inhibiting tumor cell death, and is closely related to the environment. Therefore, elucidating the regulatory role of autophagy between TAMs and tumor cells may be an important breakthrough, providing new perspectives for further research on antitumor immune mechanisms and improving the efficacy of cancer immunotherapy.
    Keywords:  TAMs; Tumor microenvironment; autophagy; cancer; immunotherapy
    DOI:  https://doi.org/10.1002/cbf.3984
  6. Angew Chem Weinheim Bergstr Ger. 2022 Oct 10. 134(41): e202207508
      Increased levels of tumor-associated macrophages (TAMs) are indicators of poor prognosis in most cancers. Although antibodies and small molecules blocking the recruitment of macrophages to tumors are under evaluation as anticancer therapies, these strategies are not specific for macrophage subpopulations. Herein we report the first enzyme-activatable chemokine conjugates for effective targeting of defined macrophage subsets in live tumors. Our constructs exploit the high expression of chemokine receptors (e.g., CCR2) and the activity of cysteine cathepsins in TAMs to target these cells selectively over other macrophages and immune cells (e.g., neutrophils, T cells, B cells). Furthermore, we demonstrate that cathepsin-activatable chemokines are compatible with both fluorescent and therapeutic cargos, opening new avenues in the design of targeted theranostic probes for immune cells in the tumor microenvironment.
    Keywords:  CCL2; Cancer; Cathepsins; Probes; Prodrugs
    DOI:  https://doi.org/10.1002/ange.202207508
  7. Biochem Biophys Res Commun. 2024 Jan 11. pii: S0006-291X(24)00048-2. [Epub ahead of print]707 149513
      Cancer is a significant global health concern, and finding effective methods to treat it has been a focus of scientific research. It has been discovered that the growth, invasion, and metastasis of tumors are closely related to the environment in which they exist, known as the tumor microenvironment (TME). The immune response interacting with the tumor occurring within the TME constitutes the tumor immune microenvironment, and the immune response can lead to anti-tumor and pro-tumor outcomes and has shown tremendous potential in immunotherapy. A channel called the P2X7 receptor (P2X7R) has been identified within the TME. It is an ion channel present in various immune cells and tumor cells, and its activation can lead to inflammation, immune responses, angiogenesis, immunogenic cell death, and promotion of tumor development. This article provides an overview of the structure, function, and pharmacological characteristics of P2X7R. We described the concept and components of tumor immune microenvironment and the influence immune components has on tumors. We also outlined the impact of P2X7R regulation and how it affects the development of tumors and summarized the effects of drugs targeting P2X7R on tumor progression, both past and current, assisting researchers in treating tumors using P2X7R as a target.
    Keywords:  ATP; Immunotherapy; P2X7R; Tumor; Tumor immune microenvironment
    DOI:  https://doi.org/10.1016/j.bbrc.2024.149513
  8. Cancer Lett. 2024 Mar 16. pii: S0304-3835(24)00207-6. [Epub ahead of print] 216814
      Candida albicans (C. albicans) is associated with the development of oral cancer. Here, we report the altered tumor microenvironment in oral tumor-bearing mice caused by C. albicans infection. Single-cell RNA sequencing showed that C. albicans infection influenced the tumor microenvironment significantly. Specifically, C. albicans infection reduced the CD8+ T cells but increased the IL-17A + CD4+ T cells and IL-17A+ γδ T cells in oral tumor. The neutralization of IL-17A or TCR γ/δ alleviated the tumor progression caused by C. albicans infection. Additionally, C. albicans infection promoted the infiltration of myeloid-derived suppressor cells (MDSCs) into tumor, especially polymorphonuclear (PMN)-MDSCs, which infiltration was reduced after the neutralization of CCL2. Thus, our findings reveal the myeloid cells-T lymphocytes axis in oral tumor microenvironment with C. albicans infection, which helps to understand the mechanisms for C. albicans promoting oral cancer from the perspective of immune microenvironment.
    Keywords:  Candida albicans; Myeloid-derived suppressor cells; Oral cancer; Tumor immune microenvironment; γδ T cells
    DOI:  https://doi.org/10.1016/j.canlet.2024.216814
  9. J Transl Med. 2024 Mar 20. 22(1): 293
      Regulatory T cells (Tregs) expressing the transcription factor FoxP3 are essential for maintaining immunological balance and are a significant component of the immunosuppressive tumor microenvironment (TME). Single-cell RNA sequencing (ScRNA-seq) technology has shown that Tregs exhibit significant plasticity and functional diversity in various tumors within the TME. This results in Tregs playing a dual role in the TME, which is not always centered around supporting tumor progression as typically believed. Abundant data confirms the anti-tumor activities of Tregs and their correlation with enhanced patient prognosis in specific types of malignancies. In this review, we summarize the potential anti-tumor actions of Tregs, including suppressing tumor-promoting inflammatory responses and boosting anti-tumor immunity. In addition, this study outlines the spatial and temporal variations in Tregs function to emphasize that their predictive significance in malignancies may change. It is essential to comprehend the functional diversity and potential anti-tumor effects of Tregs to improve tumor therapy strategies.
    Keywords:  Anti-tumor effects; Fragility; Heterogeneity; Immunotherapy; Tregs
    DOI:  https://doi.org/10.1186/s12967-024-05104-y
  10. Expert Rev Clin Immunol. 2024 Mar 21.
      INTRODUCTION: Forkhead box P3 (FoxP3) transcription factor plays critical roles in controlling immune responses and cancer progression in different cancers. FoxP3 expression within the tumor microenvironment (TME) may influence clinical outcomes negatively or positively, and it could play dual roles in cancer, either by promoting or inhibiting tumor development and progression. Some studies reported that high levels of FoxP3 could be associated with tumor progression and worse prognosis, while others reported contradictory results.AREAS COVERED: In this special report, we present a brief account on the role and function of FoxP3 in the TME, and its contribution to the clinical outcomes of cancer patients. Importantly, we give insights on the potential factors that could contribute to different clinical outcomes in cancer patients.
    EXPERT OPINION: Different studies showed that FoxP3 expression can be associated with bad prognoses in cancer patients. However, FoxP3 could have opposing roles by enhancing cancer progression or regression. Location and expression of FoxP3 in T cells or tumor cells can have different impacts on cancer prognoses. Different factors should be considered to establish FoxP3 as a more robust prognostic biomarker and a potential therapeutic target for enhancing anti-tumor immunity and improving clinical outcomes of cancer patients.
    Keywords:  Cancer; FoxP3; Prognosis; T regulatory cells; Tregs; Tumor microenvironment (TME)
    DOI:  https://doi.org/10.1080/1744666X.2024.2334258
  11. Biomaterials. 2024 Mar 13. pii: S0142-9612(24)00067-X. [Epub ahead of print]307 122533
      Myeloid-derived suppressor cells (MDSCs) play a crucial role in the immune escape mechanisms that limit the efficacy of immunotherapeutic strategies. In the tumor microenvironment, NLRP3 inflammasome-driven Interleukin-1β (IL-1β) production serves to dampen antitumor immune responses, promoting tumor growth, progression, and immunosuppression. In this study, we revealed that gold nanoparticles (Au NPs) with a size of 30 nm disrupted NLRP3 inflammasome, but not other inflammasomes, in bone marrow-derived macrophages through abrogating NLRP3-NEK7 interactions mediated by reactive oxygen species (ROS). Density functional theory (DFT) calculations provided insights into the mechanism underlying the exceptional ROS scavenging capabilities of Au NPs. Additionally, when coupled with H6, a small peptide targeting MDSCs, Au NPs demonstrated the capacity to effectively reduce IL-1β levels and diminish the MDSCs population in tumor microenvironment, leading to enhanced T cell activation and increased immunotherapeutic efficacy in mouse tumor models that are sensitive and resistant to PD-1 inhibition. Our findings unraveled a novel approach wherein peptide-modified Au NPs relieved the suppressive impact of the tumor microenvironment by inhibiting MDSCs-mediated IL-1β release, which is the first time reported the employing a nanostrategy at modulating MDSCs to reverse the immunosuppressive microenvironment and may hold promise as a potential therapeutic agent for cancer immunotherapy.
    Keywords:  Gold nanoparticles; MDSCs; NLRP3 inflammasomes; Peptides; Tumor immunotherapy
    DOI:  https://doi.org/10.1016/j.biomaterials.2024.122533
  12. iScience. 2024 Apr 19. 27(4): 109372
      In the tumor microenvironment (TME), tumor-associated NEs (TANs) have the potential to be protumorigenic or antitumorigenic within the TME in response to environmental cues. The diversity and plasticity of NEs (NEs) underlie the dual potential of TANs in the TME. Here, we utilized the tumor-targeting bacterium VNP20009 (VNP) to carry a plasmid expressed IFNβ (VNP-IFNβ), which can deliver IFNβ and remodel TANs to an antitumorigenic phenotype, and performed preclinical evaluations in the B16F10 lung metastasis model and the B16F10 subcutaneous xenograft model. Compared with VNP, VNP-IFNβ recruited more NEs and macrophages (Mφs) with antitumor phenotypes in lung metastases and activated dendritic cells (DCs) differentiation, which activated antitumor immune responses of CD4+ T cells, and ultimately inhibited melanoma progression. This study enriches the bacterial-mediated tumor therapy by using tumor-targeting bacteria to deliver IFNβ to the tumor site and inhibit melanoma growth and metastasis by remodeling the tumor immune microenvironment.
    Keywords:  Cancer; Immunology; Microenvironment
    DOI:  https://doi.org/10.1016/j.isci.2024.109372
  13. Chin Med J (Engl). 2024 Mar 19.
      ABSTRACT: Chimeric antigen receptor T (CAR-T) cell therapy achieved advanced progress in the treatment of hematological tumors. However, the application of CAR-T cell therapy for solid tumors still faces many challenges. Competition with tumor cells for metabolic resources in an already nutrient-poor tumor microenvironment is a major contributing cause to CAR-T cell therapy's low effectiveness. Abnormal metabolic processes are now acknowledged to shape the tumor microenvironment, which is characterized by increased interstitial fluid pressure, low pH level, hypoxia, accumulation of immunosuppressive metabolites, and mitochondrial dysfunction. These factors are important contributors to restriction of T cell proliferation, cytokine release, and suppression of tumor cell-killing ability. This review provides an overview of how different metabolites regulate T cell activity, analyzes the current dilemmas, and proposes key strategies to reestablish the CAR-T cell therapy's effectiveness through targeting metabolism, with the aim of providing new strategies to surmount the obstacle in the way of solid tumor CAR-T cell treatment.
    DOI:  https://doi.org/10.1097/CM9.0000000000003046
  14. Front Immunol. 2024 ;15 1325946
      Immunotherapies have revolutionized the landscape of cancer treatment. Regulatory T cells (Tregs), as crucial components of the tumor immune environment, has great therapeutic potential. However, nonspecific inhibition of Tregs in therapies may not lead to enhanced antitumor responses, but could also trigger autoimmune reactions in patients, resulting in intolerable treatment side effects. Hence, the precision targeting and inhibition of tumor-infiltrating Tregs is of paramount importance. In this overview, we summarize the characteristics and subpopulations of Tregs within tumor microenvironment and their inhibitory mechanisms in antitumor responses. Furthermore, we discuss the current major strategies targeting regulatory T cells, weighing their advantages and limitations, and summarize representative clinical trials targeting Tregs in cancer treatment. We believe that developing therapies that specifically target and suppress tumor-infiltrating Tregs holds great promise for advancing immune-based therapies.
    Keywords:  cancer; checkpoint inhibitor; chemokine; cytokine; immunotherapy; metabolism; microenvironment; regulatory T cells
    DOI:  https://doi.org/10.3389/fimmu.2024.1325946
  15. J Leukoc Biol. 2024 Mar 18. pii: qiae070. [Epub ahead of print]
      The tumor microenvironment provides a unique opportunity to gain insight into the relationship and crosstalk between different cell types. In this context, little is known about the interaction between γδ T cells and neutrophils, which are innate immune cells abundant in the tumor microenvironment. Interestingly, both γδ T cells and neutrophils are heterogenous, may play diverse regulatory roles and have been shown to have both pro-tumor and anti-tumor functions. In this editorial, we discuss recent advances in the understanding of interplay between γδ T cells and neutrophils in cancer and provide insights and future directions highlighting the role these interactions may play in cancer.
    Keywords:  neutrophils; tumor; γδ T cells
    DOI:  https://doi.org/10.1093/jleuko/qiae070
  16. Nanoscale. 2024 Mar 21.
      Tumor-associated macrophages (TAMs) play crucial roles in the immunosuppressive solid tumor microenvironment (TME). Despite their tumor-promoting functions, TAMs can also be therapeutically modulated to exhibit tumor-killing properties, making them attractive targets for tumor immunotherapy. This review highlights the recent advances in nanomedicine-based strategies centered around macrophages for enhanced cancer immunotherapy. Emerging nanomedicine-based strategies to modulate TAMs in cancer treatment include repolarization of the TAM phenotype, inhibition of monocyte recruitment, depletion of TAMs, and blockage of immune checkpoints. These strategies have shown great promise in significantly improving the efficacy of cancer immunotherapy. Moreover, macrophage-inspired drug delivery systems have demonstrated significant promise in inducing immunotherapeutic effects and enhancing therapeutic efficacy by facilitating evasion from the reticuloendothelial system and promoting accumulation at the tumor site. Finally, we also discuss the challenges and propose future opportunities associated with macrophage-modulating nanomedicine to enhance cancer immunotherapy.
    DOI:  https://doi.org/10.1039/d3nr06333j
  17. Inflamm Res. 2024 Mar 16.
      The juxtaposition of two seemingly disparate physiological phenomena within the human body-namely, cancer and pregnancy-may offer profound insights into the intricate interplay between malignancies and the immune system. Recent investigations have unveiled striking similarities between the pivotal processes underpinning fetal implantation and successful gestation and those governing tumor initiation and progression. Notably, a confluence of features has emerged, underscoring parallels between the microenvironment of tumors and the maternal-fetal interface. These shared attributes encompass establishing vascular networks, cellular mobilization, recruitment of auxiliary tissue components to facilitate continued growth, and, most significantly, the orchestration of immune-suppressive mechanisms.Our particular focus herein centers on the phenomenon of immune suppression and its protective utility in both of these contexts. In the context of pregnancy, immune suppression assumes a paramount role in shielding the semi-allogeneic fetus from the potentially hostile immune responses of the maternal host. In stark contrast, in the milieu of cancer, this very same immunological suppression fosters the transformation of the tumor microenvironment into a sanctuary personalized for the neoplastic cells.Thus, the striking parallels between the immunosuppressive strategies deployed during pregnancy and those co-opted by malignancies offer a tantalizing reservoir of insights. These insights promise to inform novel avenues in the realm of cancer immunotherapy. By harnessing our understanding of the immunological events that detrimentally impact fetal development, a knowledge grounded in the context of conditions such as preeclampsia or miscarriage, we may uncover innovative immunotherapeutic strategies to combat cancer.
    Keywords:  Cancer; Immunosuppression; Immunotherapy; Pregnancy
    DOI:  https://doi.org/10.1007/s00011-024-01866-9
  18. bioRxiv. 2024 Mar 07. pii: 2024.03.04.583349. [Epub ahead of print]
      Obesity is a predisposition factor for breast cancer, suggesting a localized, reciprocal interaction between breast cancer cells and the surrounding mammary white adipose tissue. To investigate how breast cancer cells alter the composition and function of adipose tissue, we screened the secretomes of ten human breast cancer cell lines for the ability to modulate the differentiation of adipocyte stem and progenitor cells (ASPC). The screen identified a key adipogenic modulator, Zinc Alpha-2-Glycoprotein (ZAG/AZGP1), secreted by triple-negative breast cancer (TNBC) cells. TNBC-secreted ZAG inhibits adipogenesis and instead induces the expression of fibrotic genes. Accordingly, depletion of ZAG in TNBC cells attenuates fibrosis in white adipose tissue and inhibits tumor growth. Further, high expression of ZAG in TNBC patients, but not other clinical subtypes of breast cancer, is linked to poor prognosis. Our findings suggest a role of TNBC-secreted ZAG in promoting the transdifferentiation of ASPCs into cancer-associated fibroblasts to support tumorigenesis.
    DOI:  https://doi.org/10.1101/2024.03.04.583349
  19. Front Immunol. 2024 ;15 1347492
      Allogeneic hematopoietic cell transplantation (allo-HCT) is frequently performed to cure hematological malignancies, such as acute myeloid leukemia (AML), through the graft-versus-leukemia (GVL) effect. In this immunological process, donor immune cells eliminate residual cancer cells in the patient and exert tumor control through immunosurveillance. However, GVL failure and subsequent leukemia relapse are frequent and associated with a dismal prognosis. A better understanding of the mechanisms underlying AML immune evasion is essential for developing novel therapeutic strategies to boost the GVL effect. Cellular metabolism has emerged as an essential regulator of survival and cell fate for both cancer and immune cells. Leukemia and T cells utilize specific metabolic programs, including the orchestrated use of glucose, amino acids, and fatty acids, to support their growth and function. Besides regulating cell-intrinsic processes, metabolism shapes the extracellular environment and plays an important role in cell-cell communication. This review focuses on recent advances in the understanding of how metabolism might affect the anti-leukemia immune response. First, we provide a general overview of the mechanisms of immune escape after allo-HCT and an introduction to leukemia and T cell metabolism. Further, we discuss how leukemia and myeloid cell metabolism contribute to an altered microenvironment that impairs T cell function. Next, we review the literature linking metabolic processes in AML cells with their inhibitory checkpoint ligand expression. Finally, we focus on recent findings concerning the role of systemic metabolism in sustained GVL efficacy. While the majority of evidence in the field still stems from basic and preclinical studies, we discuss translational findings and propose further avenues for bridging the gap between bench and bedside.
    Keywords:  T cells; acute myeloid leukemia; allogeneic hematopoietic cell transplantation; anti-tumor immunity; graft-versus-leukemia effect; metabolism
    DOI:  https://doi.org/10.3389/fimmu.2024.1347492
  20. Phytomedicine. 2024 Mar 13. pii: S0944-7113(24)00197-1. [Epub ahead of print]128 155532
      BACKGROUND: The tumor microenvironment (TME) of hepatocellular carcinoma is heterogeneous enough to be prone to drug resistance and multidrug resistance during treatment, and reprogramming of cholesterol metabolism in TME mediates tumor-associated macrophages (TAMs) polarization, which has an impact on the regulation of malignant tumor progression. Arenobufagin (ARBU) was extracted and isolated from toad venom (purity ≥98 %), which is the main active ingredient of the traditional Chinese medicine Chan'su with good anti-tumor effects.PURPOSE: To investigate the regulatory effect of ARBU on lipid metabolism in tumor microenvironment, interfere with macrophage polarization, and determine its mechanism of action on liver cancer progression.
    METHODS: In this study, the inhibitory effect of ARBU on the proliferation of Hepa1-6 in C57 mice and the safety of administration were evaluated by establishing a transplanted tumor model of Hepa1-6 hepatocellular carcinoma mice and using 5-FU as a positive control drug. In addition, we constructed a co-culture system of Hepa1-6 cells and primary mouse macrophages to study the effects of ARBU on the polarization phenotypic transformation of macrophages and the proliferation and migration of hepatoma cells. The influence of ARBU on the metabolism of lipids in the hepatocellular carcinoma mouse model was investigated by combining it with lipidomics technology. The influence of ARBU on the PCSK9/LDL-R signaling pathway and macrophage polarization, which regulate cholesterol metabolism, was tested by using qRT-PCR, gene editing, IF, and WB.
    CONCLUSION: ARBU significantly inhibited the proliferation of Hepa1-6 in vivo and in vitro, regulated cholesterol metabolism, and promoted the M1-type polarization of macrophages in the tumor microenvironment. ARBU inhibits cholesterol synthesis in the TME through the PCSK9/LDL-R signaling pathway, thereby blocking macrophage M2 polarization, promoting apoptosis of the tumor cells, and inhibiting their proliferation and migration.
    Keywords:  Arenobufagin; Cholesterol metabolism; PCSK9 hepatocellular carcinoma; Tumor-associated macrophages
    DOI:  https://doi.org/10.1016/j.phymed.2024.155532
  21. J Exp Clin Cancer Res. 2024 Mar 16. 43(1): 84
      BACKGROUND: How platelets interact with and influence the tumor microenvironment (TME) remains poorly characterized.METHODS: We compared the presence and participation of platelets in the TME of two tumors characterized by highly different TME, PyMT AT-3 mammary tumors and B16F1 melanoma.
    RESULTS: We show that whereas firmly adherent platelets continuously line tumor vessels of both AT-3 and B16F1 tumors, abundant extravascular stromal clusters of platelets from thrombopoietin-independent origin were present only in AT-3 mammary tumors. We further show that platelets influence the angiogenic and inflammatory profiles of AT-3 and B16F1 tumors, though with very different outcomes according to tumor type. Whereas thrombocytopenia increased bleeding in both tumor types, it further caused severe endothelial degeneration associated with massive vascular leakage, tumor swelling, and increased infiltration of cytotoxic cells, only in AT-3 tumors.
    CONCLUSIONS: These results indicate that while platelets are integral components of solid tumors, their localization and origin in the TME, as well as their impact on its shaping, are tumor type-dependent.
    Keywords:  Platelets; Solid tumors; Thrombocytopenia; Tumor microenvironment; Vascular integrity
    DOI:  https://doi.org/10.1186/s13046-024-03001-2
  22. Cancer Res Commun. 2024 Mar 20.
      Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSCs), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota crosstalk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria crosstalk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC.
    DOI:  https://doi.org/10.1158/2767-9764.CRC-23-0421
  23. Nat Commun. 2024 Mar 15. 15(1): 2270
      The success of macrophage-based adoptive cell therapy is largely constrained by poor polarization from alternatively activated (M2-like) to classically activated (M1-like) phenotype in the immunosuppressive tumor microenvironment (TME). Here, we show that the engineered macrophage (eMac) with a heat-inducible genetic switch can induce both self-polarization of adoptively transferred eMac and re-polarization of tumour-associated macrophages in response to mild temperature elevation in a mouse model. The locoregional production of proinflammatory cytokines by eMac in the TME dose not only induces the strong polarization of macrophages into a classically activated phenotype, but also ensures that the side effects typical for systemically administrate proinflammatory cytokines are avoided. We also present a wearable warming device which is adaptable for human patients and can be remotely controlled by a smartphone. In summary, our work represents a safe and efficient adoptive transfer immunotherapy method with potential for human translation.
    DOI:  https://doi.org/10.1038/s41467-024-46210-1
  24. Cancer Treat Res Commun. 2024 Mar 08. pii: S2468-2942(24)00017-0. [Epub ahead of print]39 100805
      BACKGROUND: Targeting the costimulatory receptor CD137 has shown promise as a therapeutic approach for cancer immunotherapy, resulting in anti-tumor efficacy demonstrated in clinical trials. However, the initial CD137 agonistic antibodies, urelumab and utomilumab, faced challenges in clinical trials due to the liver toxicity or lack of efficacy, respectively. Concurrently, c-MET has been identified as a highly expressed tumor-associated antigen (TAA) in various solid and soft tumors.METHODS: In this study, we aimed to develop a bispecific antibody (BsAb) that targets both c-MET and CD137, optimizing the BsAb format and CD137 binder for efficient delivery of the CD137 agonist to the tumor microenvironment (TME). We employed a monovalent c-MET motif and a trimeric CD137 Variable Heavy domain of Heavy chain (VHH) for the BsAb design.
    RESULTS: Our results demonstrate that the c-MET x CD137 BsAb provides co-stimulation to T cells through cross-linking by c-MET-expressing tumor cells. Functional immune assays confirmed the enhanced efficacy and potency of the c-MET x CD137 BsAb, as indicated by activation of CD137 signaling, target cell killing, and cytokine release in various tumor cell lines. Furthermore, the combination of c-MET x CD137 BsAb with Pembrolizumab showed a dose-dependent enhancement of target-induced T cell cytokine release.
    CONCLUSION: Overall, the c-MET x CD137 BsAb exhibits a promising developability profile as a tumor-targeted immune agonist by minimizing off-target effects while effectively delivering immune agonism. It has the potential to overcome resistance to anti-PD-(L)1 therapies.
    Keywords:  Bispecific antibody (BsAb); CD137; Cancer immunotherapy; Cytokine release; Tumor microenvironment (TME); c-MET
    DOI:  https://doi.org/10.1016/j.ctarc.2024.100805
  25. J Exp Med. 2024 Apr 01. pii: e20231263. [Epub ahead of print]221(4):
      We have previously demonstrated synergy between ICOS costimulation (IVAX; ICOSL-transduced B16-F10 cellular vaccine) and CTLA-4 blockade in antitumor therapy. In this study, we employed CyTOF and single-cell RNA sequencing and observed significant remodeling of the lymphoid and myeloid compartments in combination therapy. Compared with anti-CTLA-4 monotherapy, the combination therapy enriched Th1 CD4 T cells, effector CD8 T cells, and M1-like antitumor proinflammatory macrophages. These macrophages were critical to the therapeutic efficacy of anti-CTLA-4 combined with IVAX or anti-PD-1. Macrophage depletion with clodronate reduced the tumor-infiltrating effector CD4 and CD8 T cells, impairing their antitumor functions. Furthermore, the recruitment and polarization of M1-like macrophages required IFN-γ. Therefore, in this study, we show that there is a positive feedback loop between intratumoral effector T cells and tumor-associated macrophages (TAMs), in which the IFN-γ produced by the T cells polarizes the TAMs into M1-like phenotype, and the TAMs, in turn, reshape the tumor microenvironment to facilitate T cell infiltration, immune function, and tumor rejection.
    DOI:  https://doi.org/10.1084/jem.20231263
  26. bioRxiv. 2024 Jan 30. pii: 2024.01.26.577279. [Epub ahead of print]
      Glioblastoma (GBM) poses a significant challenge in clinical oncology due to its aggressive nature, heterogeneity, and resistance to therapies. Cancer stem cells (CSCs) play a critical role in GBM, particularly in treatment-resistance and tumor relapse, emphasizing the need to comprehend the mechanisms regulating these cells. Also, their multifaceted contributions to the tumor-microenvironment (TME) underline their significance, driven by their unique properties. This study aimed to characterize glioblastoma stem cells (GSCs), specifically slow-cycling cells (SCCs), in an immunocompetent murine GBM model to explore their similarities with their human counterparts. Using the KR158 mouse model, we confirmed that SCCs isolated from this model exhibited key traits and functional properties akin to human SCCs. KR158 murine SCCs, expanded in the gliomasphere assay, demonstrated sphere forming ability, self-renewing capacity, positive tumorigenicity, enhanced stemness and resistance to chemotherapy. Together, our findings validate the KR158 murine model as a framework to investigate GSCs and SCCs in GBM-pathology, and explore specifically the SCC-immune system communications, understand their role in disease progression, and evaluate the effect of therapeutic strategies targeting these specific connections.
    DOI:  https://doi.org/10.1101/2024.01.26.577279
  27. Trends Cancer. 2024 Mar 16. pii: S2405-8033(24)00051-7. [Epub ahead of print]
      Secreted autotaxin (ATX) promotes tumor progression by producing the pleiotropic lipid mediator lysophosphatidic acid (LPA). In a recent Nature Cancer paper, Bhattacharyya et al. show that ATX/LPA signaling suppresses CCL11-driven infiltration of eosinophils into the pancreatic tumor microenvironment to facilitate tumor progression, thus revealing a new ATX-mediated immune escape mechanism and highlighting the antitumor potential of eosinophils.
    DOI:  https://doi.org/10.1016/j.trecan.2024.03.002
  28. Biomed Pharmacother. 2024 Mar 19. pii: S0753-3322(24)00320-2. [Epub ahead of print]174 116436
      In cancer immunotherapy, chimeric antigen receptors (CARs) targeting specific antigens have become a powerful tool for cell-based therapy. CAR-natural killer (NK) cells offer selective anticancer lysis with reduced off-tumor toxicity compared to CAR-T cells, which is beneficial in the heterogeneous milieu of solid tumors. In the tumor microenvironment (TME) of glioblastoma (GBM), pericytes not only support tumor growth but also contribute to immune evasion, underscoring their potential as therapeutic targets in GBM treatment. Given this context, our study aimed to target the GBM TME, with a special focus on pericytes expressing CD19, to evaluate the potential effectiveness of CD19 CAR-iNK cells against GBM. We performed CD19 CAR transduction in induced pluripotent stem cell-derived NK (iNK) cells. To determine whether CD19 CAR targets the TME pericytes in GBM, we developed GBM-blood vessel assembloids (GBVA) by fusing GBM spheroids with blood vessel organoids. When co-cultured with GBVA, CD19 CAR-iNK cells migrated towards the pericytes surrounding the GBM. Using a microfluidic chip, we demonstrated CD19 CAR-iNK cells' targeted action and cytotoxic effects in a perfusion-like environment. GBVA xenografts recapitulated the TME including human CD19-positive pericytes, thereby enabling the application of an in vivo model for validating the efficacy of CD19 CAR-iNK cells against GBM. Compared to GBM spheroids, the presence of pericytes significantly enhanced CD19 CAR-iNK cell migration towards GBM and reduced proliferation. These results underline the efficacy of CD19 CAR-iNK cells in targeting pericytes within the GBM TME, suggesting their potential therapeutic value for GBM treatment.
    Keywords:  Assembloids; Blood vessel organoids; CAR-NK; CD19 CAR; Glioblastoma; Perivascular niche; Tumor microenvironment; Tumor-on-chip
    DOI:  https://doi.org/10.1016/j.biopha.2024.116436
  29. J Interferon Cytokine Res. 2024 Mar 22.
      Interleukin (IL)-4 and IL-13 are the main effectors of innate lymphoid cells (ILC2) of the type 2 innate immune response, which can carry out specific signal transmission between multiple cells in the tumor immune microenvironment. IL-4 and IL-13 mediate signal transduction and regulate cellular functions in a variety of solid tumors through their shared receptor chain, the transmembrane heterodimer interleukin-4 receptor alpha/interleukin-13 receptor alpha-1 (type II IL-4 receptor). IL-4, IL-13, and their receptors can induce the formation of a variety of malignant tumors and play an important role in their progression, growth, and tumor immunity. In order to explore possible targets for lung cancer prediction and treatment, this review summarizes the characteristics and signal transduction pathways of IL-4 and IL-13, and their respective receptors, and discusses in depth their possible role in the occurrence and development of lung cancer.
    Keywords:  IL-13; IL-4; cytokines; interleukin-13 receptor; interleukin-4 receptor; lung cancer
    DOI:  https://doi.org/10.1089/jir.2024.0008