bims-flamet Biomed News
on Cytokines and immunometabolism in metastasis
Issue of 2023–10–15
thirty-one papers selected by
Peio Azcoaga, Biodonostia HRI



  1. Front Oncol. 2023 ;13 1213347
      Tumor-associated macrophages (TAMs) are the main immune cells in the tumor microenvironment (TME) of endometrial cancer (EC). TAMs recruitment and polarization in EC is regulated by the TME of EC, culminating in a predominantly M2-like macrophage infiltration. TAMs promote lymphatic angiogenesis through cytokine secretion, aid immune escape of EC cells by synergizing with other immune cells, and contribute to the development of EC through secretion of exosomes so as to promoting EC development. EC is a hormone- and metabolism-dependent cancer, and TAMs promote EC through interactions on estrogen receptor (ER) and metabolic factors such as the metabolism of glucose, lipids, and amino acids. In addition, we have explored the predictive significance of some TAM-related indicators for EC prognosis, and TAMs show remarkable promise as a target for EC immunotherapy.
    Keywords:   endometrial cancer; hormones; immunotherapy; macrophage polarization; metabolism; tumor-associated macrophages
    DOI:  https://doi.org/10.3389/fonc.2023.1213347
  2. Curr Opin Biotechnol. 2023 Oct 06. pii: S0958-1669(23)00106-4. [Epub ahead of print]84 102996
      The tumor microenvironment (TME) consists of a network of metabolically interconnected tumor and immune cell types. Macrophages influence the metabolic composition within the TME, which directly impacts the metabolic state and drug response of tumors. The accumulation of oncometabolites, such as succinate, fumarate, and 2-hydroxyglutarate, represents metabolic vulnerabilities in cancer that can be targeted therapeutically. Immunometabolites are emerging as metabolic regulators of the TME impacting immune cell functions and cancer cell growth. Here, we discuss recent discoveries on the potential impact of itaconate on the TME. We highlight how itaconate influences metabolic pathways relevant to immune responses and cancer cell proliferation. We also consider the therapeutic implications of manipulating itaconate metabolism as an immunotherapeutic strategy to constrain tumor growth.
    DOI:  https://doi.org/10.1016/j.copbio.2023.102996
  3. Int J Mol Sci. 2023 Oct 05. pii: 14928. [Epub ahead of print]24(19):
      Adenosine, an immunosuppressive metabolite, is produced by adenosine triphosphate (ATP) released from dying or stressed cells and is found at high levels in the tumor microenvironment of most solid tumors. It mediates pro-tumor activities by inducing tumor cell proliferation, migration or invasion, tumor tissue angiogenesis, and chemoresistance. In addition, adenosine plays an important role in regulating anti-tumor immune responses and facilitating tumor immune escape. Adenosine receptors are broadly expressed by tumor-infiltrated immune cells, including suppressive tumor-associated macrophages and CD4+ regulatory T cells, as well as effector CD4+ T cells and CD8+ cytotoxic T lymphocytes. Therefore, adenosine is indispensable in down-regulating anti-tumor immune responses in the tumor microenvironment and contributes to tumor progression. This review describes the current progress on the role of adenosine/adenosine receptor pathway in regulating the tumor-infiltrating immune cells that contribute to tumor immune evasion and aims to provide insights into adenosine-targeted tumor immunotherapy.
    Keywords:  CD39; CD73; adenosine; tumor immunotherapy
    DOI:  https://doi.org/10.3390/ijms241914928
  4. Heliyon. 2023 Sep;9(9): e19802
      Cancer-associated fibroblasts (CAFs) are key stromal cells in the tumor microenvironment (TME) that critically contribute to cancer initiation and progression. In bladder cancer (BCa), there is emerging evidence that BCa CAFs are actively involved in cancer cell proliferation, invasion, metastasis, and chemotherapy resistance. This review outlines the present knowledge of BCa CAFs, with a particular emphasis on their origin and function in BCa progression, and provides further insights into their clinical application.
    Keywords:  Bladder cancer; Cancer-associated fibroblasts; Chemotherapy resistance; Invasion and metastasis; Proliferation
    DOI:  https://doi.org/10.1016/j.heliyon.2023.e19802
  5. Cell Death Dis. 2023 Oct 13. 14(10): 679
      Cancer immunotherapy has transformed traditional treatments, with immune checkpoint blockade being particularly prominent. However, immunotherapy has minimal benefit for patients in most types of cancer and is largely ineffective in some cancers (such as pancreatic cancer and glioma). A synergistic anti-tumor response may be produced through the combined application with traditional tumor treatment methods. Radiotherapy (RT) not only kills tumor cells but also triggers the pro-inflammatory molecules' release and immune cell infiltration, which remodel the tumor microenvironment (TME). Therefore, the combination of RT and immunotherapy is expected to achieve improved efficacy. In this review, we summarize the effects of RT on cellular components of the TME, including T cell receptor repertoires, different T cell subsets, metabolism, tumor-associated macrophages and other myeloid cells (dendritic cells, myeloid-derived suppressor cells, neutrophils and eosinophils). Meanwhile, non-cellular components such as lactate and extracellular vesicles are also elaborated. In addition, we discuss the impact of different RT modalities on tumor immunity and issues related to the clinical practice of combination therapy.
    DOI:  https://doi.org/10.1038/s41419-023-06211-2
  6. Microb Pathog. 2023 Oct 07. pii: S0882-4010(23)00418-7. [Epub ahead of print]184 106385
      Numerous studies have shown that different subtypes of breast cancer (BC) have significant differences in terms of the tumor microbiome, host gene expression, and histopathological image, whereas the biological links between these cancer-associated indicators are still unknown. Here, we performed a comprehensive analysis with 610 patients of the four subtypes of BC with matched tissue microbiota, host transcriptome, and histopathological image samples. Correlation analysis showed that the composition of intratumoral viruses shaped the tumor microenvironment (TME) of patients with BC, and the TME was further reflected in the histopathological images. Of the four subtypes, patients with triple-negative breast cancer (TNBC) had unique intratumoral viral community composition, non-cancer cell infiltration in the TME, and histopathological image characteristics. Furthermore, we detected multiple virus-cell-image association axes in TNBC, in which tumor-associated macrophages (TAMs) have clinical prognostic implication. This study provides a comprehensive map of the associations between the intratumoral virome, TME, and histopathological image of TNBC, as well as insights into disease prognosis that can be crucial for precise therapeutic intervention strategies.
    Keywords:  Histopathological image; Immune cell; Stromal cell; Triple-negative breast cancer; Tumor microenvironment; Viral community
    DOI:  https://doi.org/10.1016/j.micpath.2023.106385
  7. Cell Biosci. 2023 Oct 13. 13(1): 189
      Cell proliferation and function require nutrients, energy, and biosynthesis activity to duplicate repertoires for each daughter. It is therefore not surprising that tumor microenvironment (TME) metabolic reprogramming primarily orchestrates the interaction between tumor and immune cells. Tumor metabolic reprogramming affords bioenergetic, signaling intermediates, and biosynthesis requirements for both malignant and immune cells. Different immune cell subsets are recruited into the TME, and these manifestations have distinct effects on tumor progression and therapeutic outcomes, especially the mutual contribution of glycolysis and cholesterol metabolism. In particularly, glycolysis-cholesterol metabolic axis interconnection plays a critical role in the TME modulation, and their changes in tumor metabolism appear to be a double-edged sword in regulating various immune cell responses and immunotherapy efficacy. Hence, we discussed the signature manifestation of the glycolysis-cholesterol metabolic axis and its pivotal role in tumor immune regulation. We also highlight how hypothetical combinations of immunotherapy and glycolysis/cholesterol-related metabolic interventions unleash the potential of anti-tumor immunotherapies, as well as developing more effective personalized treatment strategies.
    Keywords:  Glycolysis-Cholesterol Metabolic Axis; Immune Cells; Immunosuppressive; Tumor microenvironment (TME)
    DOI:  https://doi.org/10.1186/s13578-023-01138-9
  8. Med Oncol. 2023 Oct 11. 40(11): 329
      CircRNAs, a type of non-coding RNA widely present in eukaryotic cells, have emerged as a prominent focus in tumor research. However, the functions of most circRNAs remain largely unexplored. Known circRNAs exert their regulatory roles through various mechanisms, including acting as microRNA sponges, binding to RNA-binding proteins, and functioning as transcription factors to modulate protein translation and coding. Tumor growth is not solely driven by gene mutations but also influenced by diverse constituent cells and growth factors within the tumor microenvironment (TME). As crucial regulators within the TME, circRNAs are involved in governing tumor growth and metastasis. This review highlights the role of circRNAs in regulating angiogenesis, matrix remodeling, and immunosuppression within the TME. Additionally, we discuss current research on hypoxia-induced circRNAs production and commensal microorganisms' impact on the TME to elucidate how circRNAs influence tumor growth while emphasizing the significance of modulating the TME.
    Keywords:  CircRNAs; ECM; Immune; TME
    DOI:  https://doi.org/10.1007/s12032-023-02194-4
  9. Environ Res. 2023 Oct 10. pii: S0013-9351(23)02166-7. [Epub ahead of print] 117362
      Cisplatin is a well-known platinum-based chemotherapy medication that is widely utilized for some malignancies. Despite the direct cytotoxic consequences of cisplatin on tumor cells, studies in the recent decade have revealed that cisplatin can also affect different cells and their secretions in the tumor microenvironment (TME). Cisplatin has complex impacts on the TME, which may contribute to its anti-tumor activity or drug resistance mechanisms. These regulatory effects of cisplatin play a paramount function in tumor growth, invasion, and metastasis. This paper aims to review the diverse impacts of cisplatin and nanoparticles loaded with cisplatin on cancer cells and also non-cancerous cells in TME. The impacts of cisplatin on immune cells, tumor stroma, cancer cells, and also hypoxia will be discussed in the current review. Furthermore, we emphasize the challenges and prospects of using cisplatin in combination with other adjuvants and therapeutic modalities that target TME. We also discuss the potential synergistic effects of cisplatin with immune checkpoint inhibitors (ICIs) and other agents with anticancer potentials such as polyphenols and photosensitizers. Furthermore, the potential of nanoparticles for targeting TME and better delivery of cisplatin into tumors will be discussed.
    Keywords:  Cancer; Cisplatin; Drug delivery; Nanoparticles; Tumor microenvironment (TME)
    DOI:  https://doi.org/10.1016/j.envres.2023.117362
  10. Cancer Biol Med. 2023 Oct 09. pii: j.issn.2095-3941.2023.0241. [Epub ahead of print]
      Plasmacytoid dendritic cells (pDCs) are a pioneer cell type that produces type I interferon (IFN-I) and promotes antiviral immune responses. However, they are tolerogenic and, when recruited to the tumor microenvironment (TME), play complex roles that have long been a research focus. The interactions between pDCs and other components of the TME, whether direct or indirect, can either promote or hinder tumor development; consequently, pDCs are an intriguing target for therapeutic intervention. This review provides a comprehensive overview of pDC crosstalk in the TME, including crosstalk with various cell types, biochemical factors, and microorganisms. An in-depth understanding of pDC crosstalk in TME should facilitate the development of novel pDC-based therapeutic methods.
    Keywords:  Plasmacytoid dendritic cell; cell crosstalk; immune activation; immune suppression; tumor microenvironment
    DOI:  https://doi.org/10.20892/j.issn.2095-3941.2023.0241
  11. J Leukoc Biol. 2023 Oct 11. pii: qiad126. [Epub ahead of print]
      Adaptive immune cells play an important role in mounting antigen-specific anti-tumor immunity. The contribution of innate immune cells such as monocytes, macrophages, natural killer (NK) cells, dendritic cells, and gamma-delta T cells is well-studied in cancer immunology. NK are innate lymphoid cells that show effector and regulatory function in a contact-dependent and contact-independent manner. The cytotoxic function of NK cells plays an important role in killing the infected and transformed host cells and controlling infection and tumor growth. However, several studies have also ascribed the role of NK cells in inducing pathophysiology in autoimmune diseases, promoting immune tolerance in the uterus, and anti-tumor function in the tumor microenvironment. We discussed the fundamentals of NK cell biology, its distribution in different organs, cellular and molecular interactions, and its cytotoxic and non-cytotoxic functions in cancer biology. We also highlighted the use of NK cell-based adoptive cellular therapy in cancer.
    Keywords:  Cancer; Innate immune cells; Tumor microenvironment; autoimmune diseases
    DOI:  https://doi.org/10.1093/jleuko/qiad126
  12. Biochim Biophys Acta Mol Basis Dis. 2023 Oct 09. pii: S0925-4439(23)00283-1. [Epub ahead of print] 166917
      The tumor microenvironment consists of cancer cells and various stromal cells, including macrophages, which exhibit diverse phenotypes with either pro-inflammatory (M1) or anti-inflammatory (M2) effects. The interaction between cancer cells and macrophages plays a crucial role in tumor progression. Small extracellular vesicles (sEVs), which facilitate intercellular communication, are known to play a vital role in this process. This review provides a comprehensive summary of how sEVs derived from cancer cells, containing miRNAs, lncRNAs, proteins, and lipids, can influence macrophage polarization. Additionally, we discuss the impact of macrophage-secreted sEVs on tumor malignant transformation, including effects on proliferation, metastasis, angiogenesis, chemoresistance, and immune escape. Furthermore, we address the therapeutic advancements and current challenges associated with macrophage-associated sEVs, along with potential solutions.
    Keywords:  Immunotherapy; Macrophages; Tumor cells; Tumor microenvironment; sEVs
    DOI:  https://doi.org/10.1016/j.bbadis.2023.166917
  13. Biochim Biophys Acta Rev Cancer. 2023 Oct 11. pii: S0304-419X(23)00146-4. [Epub ahead of print] 188997
      Multidrug resistance (MDR) poses a significant obstacle to effective cancer treatment, and the tumor microenvironment (TME) is crucial for MDR development and reversal. The TME plays an active role in promoting MDR through several pathways. However, a promising therapeutic approach for battling MDR involves targeting specific elements within the TME. Therefore, this comprehensive review elaborates on the research developments regarding the dual role of the TME in promoting and reversing MDR in cancer. Understanding the complex role of the TME in promoting and reversing MDR is essential to developing effective cancer therapies. Utilizing the adaptability of the TME by targeting novel TME-specific factors, utilizing combination therapies, and employing innovative treatment strategies can potentially combat MDR and achieve personalized treatment outcomes for patients with cancer.
    Keywords:  Bufalin; Cancer; Hypoxia-inducible factors; Multidrug resistance; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.bbcan.2023.188997
  14. Immunity. 2023 10 10. pii: S1074-7613(23)00415-6. [Epub ahead of print]56(10): 2296-2310
      Synthetic immunity to cancer has been pioneered by the application of chimeric antigen receptor (CAR) engineering into autologous T cells. CAR T cell therapy is highly amenable to molecular engineering to bypass barriers of the cancer immunity cycle, such as endogenous antigen presentation, immune priming, and natural checkpoints that constrain immune responses. Here, we review CAR T cell design and the mechanisms that drive sustained CAR T cell effector activity and anti-tumor function. We discuss engineering approaches aimed at improving anti-tumor function through a variety of mechanistic interventions for both hematologic and solid tumors. The ability to engineer T cells in such a variety of ways, including by modifying their trafficking, antigen recognition, costimulation, and addition of synthetic genes, circuits, knockouts and base edits to finely tune complex functions, is arguably the most powerful way to manipulate the cancer immunity cycle in patients.
    DOI:  https://doi.org/10.1016/j.immuni.2023.09.010
  15. Front Immunol. 2023 ;14 1251648
       Background and objectives: The relationship between the tumor microenvironment and the network of key signaling pathways in cancer plays a key role in the occurrence and development of tumors. Tumor-associated macrophages (TAMs) are important inflammatory cells in the tumor microenvironment and play an important role in tumorigenesis and progression. Macrophages in malignant tumors, mainly the M2 subtype, promote tumor progression by producing cytokines and down-regulating anti-inflammatory immune responses. Several articles have investigated the effect of macrophages on the sensitivity of cancer chemotherapeutic agents, but few such articles have been reported in cholangiocarcinoma, so we investigated the effect of M2 macrophage on the sensitivity of cholangiocarcinoma cells to Lenvatinib compared to M1.
    Methods: THP-1 monocytes were polarized to M0 macrophage by phorbol 12-myristate 13-acetate (PMA) and then induced to differentiate into M1 and M2 macrophages by LPS, IFN-γ and IL-4 and IL-13, respectively. Macrophages and cholangiocarcinoma cells were co-cultured prior to 24 hours of Lenvatinib administration, cancer cell apoptosis was detected by western-blot, FACS analysis of Annexin V and PI staining. Furthermore, we use xCELLigence RTCA SP Instrument (ACEA Bio-sciences) to monitor cell viability of Lenvatinib administration in co-culture of cholangiocarcinoma cells and macrophages. After tumorigenesis in immunodeficient mice, Lenvatinib was administered, and the effects of M2 on biological characteristics of cholangiocarcinoma cells were investigated by immuno-histochemistry.
    Results: mRNA and protein expression of M1 and M2 markers confirmed the polarization of THP-1 derived macrophages, which provided a successful and efficient model of monocyte polarization to TAMs. Lenvatinib-induced apoptosis of cholangiocarcinoma cells was significantly reduced when co-cultured with M2 macrophage, whereas apoptosis of cholangiocarcinoma cells co-cultured with M1 macrophage was increased. In the CDX model, Lenvatinib-induced cancer cell apoptosis was markedly reduced, and proliferative cells increased in the presence of M2 macrophages. Angiogenesis related factors was significantly increased in cholangiocarcinoma cells co-cultured with M2.
    Conclusion: Compared with M1, M2 macrophages can inhibit the anti-tumor effect of Lenvatinib on cholangiocarcinoma through immune regulation, which may be related to the tumor angiogenesis factor effect of M2 macrophage.
    Keywords:  cholangiocarcinoma; immune regulatory; lenvatinib; tumor microenvironment; tumor-associated macrophages
    DOI:  https://doi.org/10.3389/fimmu.2023.1251648
  16. Immunity. 2023 Oct 10. pii: S1074-7613(23)00416-8. [Epub ahead of print]56(10): 2188-2205
      The cancer-immunity cycle provides a framework to understand the series of events that generate anti-cancer immune responses. It emphasizes the iterative nature of the response where the killing of tumor cells by T cells initiates subsequent rounds of antigen presentation and T cell stimulation, maintaining active immunity and adapting it to tumor evolution. Any step of the cycle can become rate-limiting, rendering the immune system unable to control tumor growth. Here, we update the cancer-immunity cycle based on the remarkable progress of the past decade. Understanding the mechanism of checkpoint inhibition has evolved, as has our view of dendritic cells in sustaining anti-tumor immunity. We additionally account for the role of the tumor microenvironment in facilitating, not just suppressing, the anti-cancer response, and discuss the importance of considering a tumor's immunological phenotype, the "immunotype". While these new insights add some complexity to the cycle, they also provide new targets for research and therapeutic intervention.
    DOI:  https://doi.org/10.1016/j.immuni.2023.09.011
  17. Biomed Pharmacother. 2023 Oct 06. pii: S0753-3322(23)00933-2. [Epub ahead of print]168 115142
      Regulatory T cells are a subgroup of T cells with immunomodulatory functions. Different from most cytotoxic T cells and helper T cells, they play a supporting role in the immune system. What's more, regulatory T cells often play an immunosuppressive role, which mainly plays a role in maintaining the stability of the immune system and regulating the immune response in the body. However, recent studies have shown that not only playing a role in autoimmune diseases, organ transplantation, and other aspects, regulatory T cells can also play a role in the immune escape of tumors in the body, through various mechanisms to help tumor cells escape from the demic immune system, weakening the anti-cancer effect in the body. For a better understanding of the role that regulatory T cells can play in cancer, and to be able to use regulatory T cells for tumor immunotherapy more quickly. This review focuses on the research progress of various mechanisms of regulatory T cells in the tumor environment, the related research of tumor cells acting on regulatory T cells, and the existing various therapeutic methods acting on regulatory T cells.
    Keywords:  Immune tolerance; Immunosuppression therapy; Treg; Tumor immunotherapy; Tumor microenvironment
    DOI:  https://doi.org/10.1016/j.biopha.2023.115142
  18. Front Immunol. 2023 ;14 1265299
      Leukemia cells prevent immune system from clearing tumor cells by inducing the immunosuppression of the bone marrow (BM) microenvironment. In recent years, further understanding of the BM microenvironment and immune landscape of leukemia has resulted in the introduction of several immunotherapies, including checkpoint inhibitors, T-cell engager, antibody drug conjugates, and cellular therapies in clinical trials. Among them, the programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) axis is a significant checkpoint for controlling immune responses, the PD-1 receptor on tumor-infiltrating T cells is bound by PD-L1 on leukemia cells. Consequently, the activation of tumor reactive T cells is inhibited and their apoptosis is promoted, preventing the rejection of the tumor by immune system and thus resulting in the occurrence of immune tolerance. The PD-1/PD-L1 axis serves as a significant mechanism by which tumor cells evade immune surveillance, and PD-1/PD-L1 checkpoint inhibitors have been approved for the treatment of lymphomas and varieties of solid tumors. However, the development of drugs targeting PD-1/PD-L1 in leukemia remains in the clinical-trial stage. In this review, we tally up the basic research and clinical trials on PD-1/PD-L1 inhibitors in leukemia, as well as discuss the relevant toxicity and impacts of PD-1/PD-L1 on other immunotherapies such as hematopoietic stem cell transplantation, bi-specific T-cell engager, chimeric antigen receptor T-cell immunotherapy.
    Keywords:  PD-1/PD-L1 mAbs; immunotherapy; leukemia; programmed cell death protein 1; programmed death-ligand 1
    DOI:  https://doi.org/10.3389/fimmu.2023.1265299
  19. Adv Sci (Weinh). 2023 Oct 11. e2302705
      Immunotherapy has recently emerged as the predominant therapeutic approach for cervical cancer (CCa), driven by the groundbreaking clinical achievements of immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 antibodies. N4-acetylcytidine (ac4C) modification, catalyzed by NAT10, is an important posttranscriptional modification of mRNA in cancers. However, its impact on immunological dysregulation and the tumor immunotherapy response in CCa remains enigmatic. Here, a significant increase in NAT10 expression in CCa tissues is initially observed that is clinically associated with poor prognosis. Subsequently, it is found that HOXC8 activated NAT10 by binding to its promoter, thereby stimulating ac4C modification of FOXP1 mRNA and enhancing its translation efficiency, eventually leading to induction of GLUT4 and KHK expression. Moreover, NAT10/ac4C/FOXP1 axis activity resulted in increased glycolysis and a continuous increase in lactic acid secretion by CCa cells. The lactic acid-enriched tumor microenvironment (TME) further contributed to amplifying the immunosuppressive properties of tumor-infiltrating regulatory T cells (Tregs). Impressively, NAT10 knockdown enhanced the efficacy of PD-L1 blockade-mediated tumor regression in vivo. Taken together, the findings revealed the oncogenic role of NAT10 in initiating crosstalk between cancer cell glycolysis and immunosuppression, which can be a target for synergistic PD-1/PD-L1 blockade immunotherapy in CCa.
    Keywords:  N4-acetylcytidine; NAT10/ac4C/FOXP1 axis; PD-L1 blockade-mediated immunosuppression; cervical cancer; glycolysis
    DOI:  https://doi.org/10.1002/advs.202302705
  20. Mol Ther Nucleic Acids. 2023 Dec 12. 34 102037
      Protein is an essential component of all living organisms and is primarily responsible for life activities; furthermore, its synthesis depends on a highly complex and accurate translation system. For proteins, the regulation at the translation level exceeds the sum of that during transcription, mRNA degradation, and protein degradation. Therefore, it is necessary to study regulation at the translation level. Imbalance in the translation process may change the cellular landscape, which not only leads to the occurrence, maintenance, progression, invasion, and metastasis of cancer but also affects the function of immune cells and changes the tumor microenvironment. Detailed analysis of transcriptional and protein atlases is needed to better understand how gene translation occurs. However, a more rigorous direct correlation between mRNA and protein levels is needed, which somewhat limits further studies. Translatomics is a technique for capturing and sequencing ribosome-related mRNAs that can effectively identify translation changes caused by ribosome stagnation and local translation abnormalities during cancer occurrence to further understand the changes in the translation landscape of cancer cells themselves and immune cells in the tumor microenvironment, which can provide new strategies and directions for tumor treatment.
    Keywords:  MT: RNA/DNA Editing; TME; antitumor immunity; mRNA; translation changes; translatomics; tumor microenvironment
    DOI:  https://doi.org/10.1016/j.omtn.2023.102037
  21. Redox Biol. 2023 Oct 06. pii: S2213-2317(23)00324-5. [Epub ahead of print]67 102923
      As the predominant immunosuppressive component within the tumor microenvironment (TME), cancer-associated fibroblasts (CAFs) inhibit Natural Killer cell (NK cell) activity to promote tumor progression and immune escape; however, the mechanisms of cross-talk between CAFs and NK cells in gastric cancer (GC) remain poorly understood. In this study, we demonstrate that NK cell levels are inversely correlated with CAFs abundance in human GC. CAFs impair the anti-tumor capacity of NK cells by inducing ferroptosis, a cell death process characterized by the accumulation of iron-dependent lipid peroxides. CAFs induce ferroptosis in NK cells by promoting iron overload; conversely, decreased intracellular iron levels protect NK cells against CAF-induced ferroptosis. Mechanistically, CAFs increase the labile iron pool within NK cells via iron export into the TME, which is mediated by the upregulated expression of iron regulatory genes ferroportin1 and hephaestin in CAFs. Moreover, CAF-derived follistatin like protein 1(FSTL1) upregulates NCOA4 expression in NK cells via the DIP2A-P38 pathway, and NCOA4-mediated ferritinophagy is required for CAF-induced NK cell ferroptosis. In a human patient-derived organoid model, functional targeting of CAFs using a combination of deferoxamine and FSTL1-neutralizing antibody significantly alleviate CAF-induced NK cell ferroptosis and boost the cytotoxicity of NK cells against GC. This study demonstrates a novel mechanism of suppression of NK cell activity by CAFs in the TME and presents a potential therapeutic approach to augment the immune response against GC mediated by NK cells.
    Keywords:  Cancer-associated fibroblasts; Ferritinophagy; Ferroptosis; Iron regulation; NK cells
    DOI:  https://doi.org/10.1016/j.redox.2023.102923
  22. Cancers (Basel). 2023 Sep 28. pii: 4771. [Epub ahead of print]15(19):
      Breast cancer (BC) is the most common cancer type in women and the second leading cause of death. Despite recent advances, the mortality rate of BC is still high, highlighting a need to develop new treatment strategies including the modulation of the immune system and immunotherapies. In this regard, understanding the complex function of the involved immune cells and their crosstalk with tumor cells is of great importance. T-cells are recognized as the most important cells in the tumor microenvironment and are divided into several subtypes including helper, cytotoxic, and regulatory T-cells according to their transcription factors, markers, and functions. This article attempts to provide a comprehensive review of the role of T-cell subsets in the prognosis and treatment of patients with BC, and crosstalk between tumor cells and T-cells. The literature overwhelmingly contains controversial findings mainly due to the plasticity of T-cell subsets within the inflammatory conditions and the use of different panels for their phenotyping. However, investigating the role of T-cells in BC immunity depends on a variety of factors including tumor types or subtypes, the stage of the disease, the localization of the cells in the tumor tissue and the presence of different cells or cytokines.
    Keywords:  T lymphocyte; breast cancer; cytotoxic subset; helper subset; immune system; regulatory subset
    DOI:  https://doi.org/10.3390/cancers15194771
  23. Front Immunol. 2023 ;14 1292819
      
    Keywords:  cancer immunotherapy; citrullinated histone 3; macrophage extracellular traps (METs); myeloperoxidase (MPO); neutrophil elastase (NE); neutrophil extracellular traps (NETs); tumor immunity; tumor microenvironment (TME)
    DOI:  https://doi.org/10.3389/fimmu.2023.1292819
  24. NPJ Biofilms Microbiomes. 2023 Oct 09. 9(1): 76
      Recent evidence suggests that some human cancers may harbor low-biomass microbial ecosystems, spanning bacteria, viruses, and fungi. Bacteria, the most-studied kingdom in this context, are suggested by these studies to localize within cancer cells, immune cells and other tumor microenvironment cell types, where they are postulated to impact multiple cancer-related functions. Herein, we provide an overview of intratumoral bacteria, while focusing on intracellular bacteria, their suggested molecular activities, communication networks, host invasion and evasion strategies, and long-term colonization capacity. We highlight how the integration of sequencing-based and spatial techniques may enable the recognition of bacterial tumor niches. We discuss pitfalls, debates and challenges in decisively proving the existence and function of intratumoral microbes, while reaching a mechanistic elucidation of their impacts on tumor behavior and treatment responses. Together, a causative understanding of possible roles played by intracellular bacteria in cancer may enable their future utilization in diagnosis, patient stratification, and treatment.
    DOI:  https://doi.org/10.1038/s41522-023-00446-9
  25. Int J Mol Sci. 2023 Oct 05. pii: 14934. [Epub ahead of print]24(19):
      Despite the "big data" on cancer from recent breakthroughs in high-throughput technology and the development of new therapeutic modalities, it remains unclear as to how intra-tumor heterogeneity and phenotypic plasticity created by various somatic abnormalities and epigenetic and metabolic adaptations orchestrate therapy resistance, immune evasiveness, and metastatic ability. Tumors are formed by various cells, including immune cells, cancer-associated fibroblasts, and endothelial cells, and their tumor microenvironment (TME) plays a crucial role in malignant tumor progression and responses to therapy. ADP-ribosylation factor 6 (ARF6) and AMAP1 are often overexpressed in cancers, which statistically correlates with poor outcomes. The ARF6-AMAP1 pathway promotes the intracellular dynamics and cell-surface expression of various proteins. This pathway is also a major target for KRAS/TP53 mutations to cooperatively promote malignancy in pancreatic ductal adenocarcinoma (PDAC), and is closely associated with immune evasion. Additionally, this pathway is important in angiogenesis, acidosis, and fibrosis associated with tumor malignancy in the TME, and its inhibition in PDAC cells results in therapeutic synergy with an anti-PD-1 antibody in vivo. Thus, the ARF6-based pathway affects the TME and the intrinsic function of tumors, leading to malignancy. Here, we discuss the potential mechanisms of this ARF6-based pathway in tumorigenesis, and novel therapeutic strategies.
    Keywords:  AMAP1; ARF6; KRAS; PD-1; PD-L1; PDAC; TP53; angiogenesis; immune evasion
    DOI:  https://doi.org/10.3390/ijms241914934
  26. Front Pharmacol. 2023 ;14 1271321
      Targeted immunotherapies have emerged as a transformative approach in cancer treatment, offering enhanced specificity to tumor cells, and minimizing damage to healthy tissues. The targeted treatment of the tumor immune system has become clinically applicable, demonstrating significant anti-tumor activity in both early and late-stage malignancies, subsequently enhancing long-term survival rates. The most frequent and significant targeted therapies for the tumor immune system are executed through the utilization of checkpoint inhibitor antibodies and chimeric antigen receptor T cell treatment. However, when using immunotherapeutic drugs or combined treatments for solid tumors like osteosarcoma, challenges arise due to limited efficacy or the induction of severe cytotoxicity. Utilizing nanoparticle drug delivery systems to target tumor-associated macrophages and bone marrow-derived suppressor cells is a promising and attractive immunotherapeutic approach. This is because these bone marrow cells often exert immunosuppressive effects in the tumor microenvironment, promoting tumor progression, metastasis, and the development of drug resistance. Moreover, given the propensity of myeloid cells to engulf nanoparticles and microparticles, they are logical therapeutic targets. Therefore, we have discussed the mechanisms of nanomedicine-based enhancement of immune therapy through targeting myeloid cells in osteosarcoma, and how the related therapeutic strategies well adapt to immunotherapy from perspectives such as promoting immunogenic cell death with nanoparticles, regulating the proportion of various cellular subgroups in tumor-associated macrophages, interaction with myeloid cell receptor ligands, activating immunostimulatory signaling pathways, altering myeloid cell epigenetics, and modulating the intensity of immunostimulation. We also explored the clinical implementations of immunotherapy grounded on nanomedicine.
    Keywords:  immunotherapy; myeloid cells; nanomedicine systems; osteosarcoma; tumor immune microenvironment
    DOI:  https://doi.org/10.3389/fphar.2023.1271321
  27. Cancers (Basel). 2023 Oct 08. pii: 4883. [Epub ahead of print]15(19):
      Inflammatory breast cancer (IBC) is an aggressive disease with a poor prognosis and a lack of effective treatments. It is widely established that understanding the interactions between tumor-associated macrophages (TAMs) and the tumor microenvironment is essential for identifying distinct targeting markers that help with prognosis and subsequent development of effective treatments. In this study, we present a 3D in vitro microfluidic IBC platform consisting of THP1 M0, M1, or M2 macrophages, IBC cells, and endothelial cells. The platform comprises a collagen matrix that includes an endothelialized vessel, creating a physiologically relevant environment for cellular interactions. Through the utilization of this platform, it was discovered that the inclusion of tumor-associated macrophages (TAMs) led to an increase in the formation of new blood vessel sprouts and enhanced permeability of the endothelium, regardless of the macrophage phenotype. Interestingly, the platforms containing THP-1 M1 or M2 macrophages exhibited significantly greater porosity in the collagen extracellular matrix (ECM) compared to the platforms containing THP-1 M0 and the MDA-IBC3 cells alone. Cytokine analysis revealed that IL-8 and MMP9 showed selective increases when macrophages were cultured in the platforms. Notably, intravasation of tumor cells into the vessels was observed exclusively in the platform containing MDA-IBC3 and M0 macrophages.
    Keywords:  MDA-IBC3; angiogenesis; extravasation; inflammatory breast cancer; intravasation; lymphangiogenesis; tumor-associated macrophages; vasculature
    DOI:  https://doi.org/10.3390/cancers15194883
  28. Immunity. 2023 Oct 10. pii: S1074-7613(23)00410-7. [Epub ahead of print]56(10): 2231-2253
      CD8+ T cells are end effectors of cancer immunity. Most forms of effective cancer immunotherapy involve CD8+ T cell effector function. Here, we review the current understanding of T cell function in cancer, focusing on key CD8+ T cell subtypes and states. We discuss factors that influence CD8+ T cell differentiation and function in cancer through a framework that incorporates the classic three-signal model and a fourth signal-metabolism-and also consider the impact of the tumor microenvironment from a T cell perspective. We argue for the notion of immunotherapies as "pro-drugs" that act to augment or modulate T cells, which ultimately serve as the drug in vivo, and for the importance of overall immune health in cancer treatment and prevention. The progress in understanding T cell function in cancer has and will continue to improve harnessing of the immune system across broader tumor types to benefit more patients.
    Keywords:  CD8 T cells; T cell exhaustion; cancer; immune checkpoint blockade; immunology; immunotherapy; metabolism
    DOI:  https://doi.org/10.1016/j.immuni.2023.09.005
  29. Oncoimmunology. 2023 ;12(1): 2265703
      Chimeric antigen receptor (CAR) T cell immunotherapy has demonstrated success in the treatment of hematological malignancies; however, its efficacy and applications in solid tumors remain limited. Immunosuppressive factors, particularly inhibitory checkpoint molecules, restrict CAR T cell activity inside solid tumors. The modulation of checkpoint pathways has emerged as a promising approach to promote anti-tumor responses in CAR T cells. Programmed cell death protein 1 (PD1) and T cell immunoreceptor with Ig and ITIM domains (TIGIT) are two critical immune-checkpoint molecules that suppress anti-tumor activity in T cells. Simultaneous targeting of these two inhibitory molecules could be an efficient checkpoint modulation strategy. Here, we developed a PD1-TIGIT chimeric immune-checkpoint switch receptor (CISR) that enhances the efficacy of CAR T cell immunotherapy by reversing the inhibitory checkpoint signals of PD1/PDL1 and/or TIGIT/CD155. In addition to neutralizing PDL1 and CD155, this chimeric receptor is engineered with the transmembrane region and intracellular domain of CD28, thereby effectively enhancing T cell survival and tumor-targeting functions. Notably, under simultaneous stimulation of PDL1 and CD155, CISR-CAR T cells demonstrate superior performance in terms of cell survival, proliferation, cytokine release, and cytotoxicity in vitro, compared with conventional CAR T cells. Experiments utilizing both cell line- and patient-derived xenotransplantation tumor models showed that CISR-CAR T cells exhibit robust infiltration and anti-tumor efficiency in vivo. Our results highlight the potential for the CISR strategy to enhance T cell anti-tumor efficacy and provide an alternative approach for T cell-based immunotherapies.
    Keywords:  Cancer immunotherapy; PD1; TIGIT; chimeric antigen receptor T; immune-checkpoint
    DOI:  https://doi.org/10.1080/2162402X.2023.2265703
  30. Cells. 2023 Oct 04. pii: 2404. [Epub ahead of print]12(19):
      Non-small-cell lung cancer (NSCLC) remains one of the leading causes of death worldwide. While NSCLCs possess antigens that can potentially elicit T cell responses, defective tumor antigen presentation and T cell activation hinder host anti-tumor immune responses. The NSCLC tumor microenvironment (TME) is composed of cellular and soluble mediators that can promote or combat tumor growth. The composition of the TME plays a critical role in promoting tumorigenesis and dictating anti-tumor immune responses to immunotherapy. Dendritic cells (DCs) are critical immune cells that activate anti-tumor T cell responses and sustain effector responses. DC vaccination is a promising cellular immunotherapy that has the potential to facilitate anti-tumor immune responses and transform the composition of the NSCLC TME via tumor antigen presentation and cell-cell communication. Here, we will review the features of the NSCLC TME with an emphasis on the immune cell phenotypes that directly interact with DCs. Additionally, we will summarize the major preclinical and clinical approaches for DC vaccine generation and examine how effective DC vaccination can transform the NSCLC TME toward a state of sustained anti-tumor immune signaling.
    Keywords:  DC; DC vaccination; NSCLC; TME; dendritic cell; immunotherapy; lung cancer; lung cancer vaccination; non-small-cell lung cancer; tumor microenvironment; tumor vaccination
    DOI:  https://doi.org/10.3390/cells12192404
  31. Cell Rep. 2023 Oct 05. pii: S2211-1247(23)01225-1. [Epub ahead of print]42(10): 113213
      The tumor microenvironment (TME) plays decisive roles in disabling T cell-mediated antitumor immunity, but the immunoregulatory functions of its biophysical properties remain elusive. Extracellular matrix (ECM) stiffening is a hallmark of solid tumors. Here, we report that the stiffened ECM contributes to the immunosuppression in TME via activating the Rho-associated coiled-coil-containing protein kinase (ROCK)-myosin IIA-filamentous actin (F-actin) mechanosignaling pathway in tumor cells to promote the generation of TRIM14-scavenging nonmuscle myosin heavy chain IIA (NMHC-IIA)-F-actin stress fibers, thus accelerating the autophagic degradation of cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) to deprive tumor cyclic GMP-AMP (cGAMP) and further attenuating tumor immunogenicity. Pharmacological inhibition of myosin IIA effector molecules with blebbistatin (BLEB) or the RhoA upstream regulator of this pathway with simvastatin (SIM) restored tumor-intrinsic cGAS-mediated cGAMP production and enhanced antitumor immunity. Our work identifies that ECM stiffness is an important biophysical cue to regulate tumor immunogenicity via the ROCK-myosin IIA-F-actin axis and that inhibiting this mechanosignaling pathway could boost immunotherapeutic efficacy for effective solid tumor treatment.
    Keywords:  CP: Cancer; CP: Immunology; ECM stiffness; ROCK-myosin IIA-F-actin axis; TRIM14 protein; cGAS signaling; tumor immunity
    DOI:  https://doi.org/10.1016/j.celrep.2023.113213