bims-fascar Biomed News
on Phase separation and cellular architecture
Issue of 2019‒06‒30
two papers selected by
Victoria Yan
Max Planck Institute of Molecular Cell Biology and Genetics


  1. Chemistry. 2019 Jun 25.
      Liquid-liquid phase separation (LLPS) of proteins and other biomolecules plays critical roles in the organization of extracellular materials and membrane-less compartmentalization of intra-organismal space through the formation of condensates. Structural properties of such mesoscopic droplet-like states were studied by spectroscopy, microscopy, and other biophysical techniques. The temperature dependence of biomolecular LLPS has been studied extensively, indicating that phase-separated condensed states of proteins can be stabilized or destabilized by increasing temperature. In contrast, the physical and biological significance of hydrostatic pressure on LLPS is less appreciated. Summarized here are recent investigations of protein LLPS under pressures up to the kbar-regime. Strikingly, for the cases studied thus far, LLPSs of both globular proteins and intrinsically disordered proteins/regions are typically more sensitive to pressure than the folding of proteins, suggesting that organisms inhabiting the deep sea and sub-seafloor sediments, under pressures up to 1 kbar and beyond, have to mitigate this pressure-sensitivity to avoid unwanted destabilization of their functional biomolecular condensates. Interestingly, we found that trimethylamine-N-oxide (TMAO), an osmolyte upregulated in deep-sea fish, can significantly stabilize protein droplets under pressure, pointing to another adaptive advantage for increased TMAO concentrations in deep-sea organisms besides the osmolyte's stabilizing effect against protein unfolding. As life on Earth might have originated in the deep sea, pressure-dependent LLPS is pertinent to questions regarding prebiotic proto-cells. Here we offer a conceptual framework for rationalizing the recent experimental findings and present an outline of the basic thermodynamics of temperature-, pressure-, and osmolyte-dependent LLPS as well as a molecular-level statistical mechanics picture in terms of solvent-mediated interactions and void volumes.
    Keywords:  Proteins; high pressure; intrinsically disordered proteins; liquid-liquid phase separation; lysozyme
    DOI:  https://doi.org/10.1002/chem.201902210
  2. Biochemistry. 2019 Jun 25.
      Division of fungal and animal cells depends on scaffold proteins called anillins. Cytokinesis by the fission yeast Schizosaccharomyces pombe is compromised by the loss of anillin Mid1p (Mid1, UniProtKB P78953 ), because cytokinesis organizing centers, called nodes, are misplaced and fail to acquire myosin-II, so they assemble slowly into abnormal contractile rings. The C-terminal half of Mid1p consists of lipid binding C2 and PH domains, but the N-terminal half (Mid1p-N452) performs most of the functions of the full-length protein. Little is known about the structure of the N-terminal half of Mid1p, so we investigated its physical properties using structure prediction tools, spectroscopic techniques, and hydrodynamic measurements. The data indicate that Mid1p-N452 is intrinsically disordered but moderately compact. Recombinant Mid1p-N452 purified from insect cells was phosphorylated, which weakens its tendency to aggregate. Purified Mid1p-N452 demixes into liquid droplets at concentrations far below its concentration in nodes. These physical properties are appropriate for scaffolding other proteins in nodes.
    DOI:  https://doi.org/10.1021/acs.biochem.9b00217