bims-exocan Biomed News
on Exosomes roles in cancer
Issue of 2025–05–25
four papers selected by
Muhammad Rizwan, COMSATS University



  1. J Biochem Mol Toxicol. 2025 Jun;39(6): e70315
      Recent advancements in exosome research have revealed their crucial role in myeloid leukemia, encompassing chronic myeloid leukemia (CML) and acute myeloid leukemia (AML). Exosomes, small extracellular vesicles released by various cells, play a significant role in intercellular communication and impact key cellular processes such as growth, proliferation, angiogenesis, survival, and apoptosis. In leukemia, exosomes contribute to disease progression and therapeutic resistance by facilitating immune evasion, enhancing tumor cell proliferation, and promoting angiogenesis. For instance, exosomes derived from CML cells can transfer drug resistance to sensitive cells, and some exosomes derived from AML patients contain cytokines like TGF-β1 that inhibit immune cell activity. Exosomes also influence tumor organotropism by interacting with extracellular matrix molecules and modifying the tumor microenvironment. Despite their high potential, clinical applications of exosomes are limited. Their natural nanoparticle properties-such as adaptability, biodegradability, low toxicity, and the ability to cross biological barriers-make them promising candidates for targeted drug delivery and personalized medicine. Further research is necessary to scale up exosome production and harness their full therapeutic potential. By integrating advancements in exosome biology with innovative therapeutic strategies, there is significant potential for improved management and treatment of leukemia.
    Keywords:  drug Resistance; exosomes; leukemia; personalized medicine; tumor microenvironment
    DOI:  https://doi.org/10.1002/jbt.70315
  2. Eur J Med Res. 2025 May 19. 30(1): 393
      Tumor angiogenesis facilitates cancer progression by supporting tumor growth and metastasis. MicroRNA-155 (miR-155) plays a pivotal role in regulating angiogenesis through both direct effects on tumor and endothelial cells and indirect modulation via exosomal communication. This review highlights miR-155's pro-angiogenic influence on endothelial cell behavior and tumor microenvironment remodeling. Additionally, exosomal miR-155 enhances intercellular communication, promoting vascularization in several cancers. Emerging therapeutic strategies include miR-155 inhibition using antagomirs, exosome-mediated delivery systems, and modulation of pathways such as JAK2/STAT3 and TGF-β/SMAD2. Targeting miR-155 represents a promising approach to hinder tumor angiogenesis and improve cancer therapy outcomes.
    Keywords:  Angiogenesis; Cancer; Exosome; MicroRNA-155
    DOI:  https://doi.org/10.1186/s40001-025-02618-z
  3. Cancer Lett. 2025 May 21. pii: S0304-3835(25)00359-3. [Epub ahead of print] 217792
      Gastric cancer ranks fifth among the most prevalent cancers globally, with a dismal prognosis. In recent years, immunotherapy, particularly immune checkpoint inhibitors, has emerged as a glimmer of hope for advanced gastric cancer patients. However, not all patients can benefit from this treatment modality, as the tumor microenvironment significantly influences treatment efficacy. Exosomes, pivotal mediators of intercellular communication, exert intricate and diverse effects in shaping and regulating the tumor microenvironment. This review provides a comprehensive overview of the functional mechanisms of exosomes within the gastric cancer tumor microenvironment. It delves into their biogenesis, functions, and impact on innate and adaptive immune cells (such as dendritic cells, myeloid-derived suppressor cells, and T cells) and cancer-associated fibroblasts. Additionally, the potential applications of exosomes in gastric cancer immunotherapy are explored, including their use as biomarkers to predict responses to immune checkpoint inhibitors, and drug delivery vectors, and in the development of exosome-based vaccines and gene therapy. Notably, this review emphasizes the dual nature of exosomes: they can facilitate tumor immune escape, yet they also serve as promising targets for innovative therapeutic strategies. It also compares potential exosome-based strategies with existing immunotherapies like ICIs and emerging CAR-T cell therapies. Finally, insights into the future of exosomes in precision immunotherapy for gastric cancer are offered, presenting a forward-looking perspective on this emerging field.
    Keywords:  Exosomes; Gastric Cancer; Immunotherapy; Therapy; Tumor Microenvironment
    DOI:  https://doi.org/10.1016/j.canlet.2025.217792
  4. J Mater Chem B. 2025 May 20.
      Exosomes are small extracellular vesicles with a diameter of 30-150 nm, secreted by a variety of cells and containing various active substances such as nucleic acids, proteins and lipids. The use of exosomes as drug carriers for targeted delivery of therapeutics has been studied for a long time. Ultrasound is recognized as a non-invasive diagnostic and therapeutic method for assisting drug loading and targeted delivery, cellular uptake and therapy. In this review, we summarize the applications of ultrasound in assisting drug loading into exosomes, targeted delivery of exosome-based drug formulations, cellular uptake, and therapy, and explore the prospects for the combined application of exosomes/exosome-based drug formulations and ultrasound.
    DOI:  https://doi.org/10.1039/d4tb01530d